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Abstract

Most public goods are durable and have a significant dynamic component. In this paper,

we report the results from an experiment designed explicitly to study the dynamics of free

riding behavior in the accumulation of a durable public good. This dynamic free-rider problem

differs from static ones in fundamental ways and implies several economically important predic-

tions that are absent in static frameworks. We consider two cases: economies with reversibility

(RIE), where the agents can either increase or decrease the accumulated stock; and economies

with irreversibility (IIE), where contributions are non-negative. The aggregate outcomes sup-

port the key qualitative prediction of the Markov Perfect Equilibrium (MPE): IIE converges

to an accumulated level of public good that is an order of magnitude higher than RIE; the

accumulation path is inefficiently slow in both RIE and IIE; and the public good is signifi-

cantly under-provided. On the other hand, the MPE does not fully capture the complexity of

individual behavior: public good investment is higher than predicted, especially in IIE, and

agents strategies also depend, to a limited extent, on the contributions of others.
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1 Introduction

There is a vast literature addressing questions related to the provision of public goods in

static environments. This includes hundreds of theoretical papers in the lineage initiated by

Samuelson’s (1954) seminal paper, presaged by the classical treatises on public finance by

Wicksell and Lindahl.1 It also includes hundreds of experimental papers based on one vari-

ation or another of Samuelson’s theoretical model (Ledyard 1995). The typical motivating

examples are national defense, public health, transportation infrastructure, pollution abate-

ment, and so forth. What is striking is that essentially all economically important examples

are public goods that take years to accumulate, provide streams of benefits over the long

term, and require ongoing expenditures in order to improve or even maintain their levels.

In other words, most public goods one can think of are durable goods and hence dynamics

are an important component of their provision. In spite of this, remarkably little research

has addressed the durable public goods problem from a dynamic perspective, either in the

theoretical or experimental literatures.

We are mainly interested in three questions: How serious is free riding in the provision of

durable public goods? What new issues emerge from the dynamic nature of the investment

process? How do the answers to these questions depend on the degree to which investment

decisions are reversible over time?

Dynamic free-rider problems differ from static in subtle but important ways. In dynamic

environments, we not only have the familiar free rider problem present in static public good

provision, but also present is a second dynamic free rider phenomenon that further erodes

incentives for efficient provision. In these games, strategies depend on the accumulated level

of the public good, the state variable of the game: an increase in current investment by one

agent typically triggers a reduction in future investment by all agents, in what is essentially

a dynamic crowding-out effect. Such dynamic crowding out is especially severe if agents

coordinate on stationary equilibria where strategies depend only on the accumulated level

of the public good. On the other hand, the infinite horizon of the game generates a plethora

of non-stationary equilibria that provide strategic opportunities to endogenously support

cooperative outcomes using carrot-and-stick strategies. In principle, this could completely

overcome both the static and the dynamic free rider problems. Thus, it is an open empirical

question whether or not the free rider problem is exacerbated or ameliorated in the case of

dynamic provision of durable public goods, as compared to one-shot public goods problems.

Dynamic free-rider problems, moreover, offer a number of economically important predic-

tions that cannot be assessed (or even stated) with static frameworks because they depend

1An excellent account of the development of the theory of public goods is Silvestre (2003).
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on the durability of the public good. First, regarding the storage technology, a public good

is reversible if players can either increase it or decrease it transforming it back to private

consumption; a public good is irreversible, if players cannot decrease it. Most investments

are partially reversible, and the degree (or cost) of reversibility varies widely.2 What is

the effect of irreversibility on contributions? Second, regarding the accumulation process,

how are investment strategies going to depend on the state variable? If players use the

state as a reference point, then the steady state may depend on the investments in the first

periods: a good start with over-investment (compared to the equilibrium level) may induce a

permanent increase in the steady state. If agents instead are anchored to a given equilibrium

steady state target, then players should be expected to correct “anomalous” contributions:

over-investment in the early periods should be corrected with underinvestment later on.

In this work, we make a first attempt to answer the questions raised above by studying

the theoretical predictions of a simple dynamic public good game in a laboratory experiment.

The economy we study has n individuals. In each period, each individual is endowed with

w units of input that can be allocated between personal consumption and contribution to

the stock of durable public good. Utility is linear in consumption of the private good and

concave in the accumulated stock of the durable public good. Total payoffs for a player in

the game are the discounted sum of utility over an infinite horizon of the game, where the

discount factor is δ. We characterize the efficient accumulation path as a function of w, n,

and δ.3 We study the Markov perfect equilibria of the game under two different assumptions

about reversibility: full reversibility and irreversibility. We prove that investment is always

higher in the irreversible case. We analyze the best subgame perfect equilibrium (a solution

concept often used in applied work) of the two models and prove that the optimal invest-

ment strategies can be supported as an equilibrium with reversible investment but not with

irreversible investment. The comparative static predictions implied by the two equilibrium

concepts are completely opposed with respect to the effect of reversibility on investment: the

Markov equilibrium predicts higher investments in a irreversible economy, the most efficient

subgame perfect equilibrium the opposite. These contrasting theoretical predictions are the

2For example, the art collection at the Louvre, which took centuries to accumulate, could be sold off to
private collectors and the proceeds distributed as transfer payments to the citizens of France. Cobblestone
roads have been dug up and the stones used to build private dwellings. Military vehicles and aircraft
can be (and have been) privatized and converted to civilian use. Publicly owned open space, even with
conservation easements, are routinely converted to the private development of shopping malls, ski resorts, or
new residential communities. Decades of sustainable management of fisheries, forests or other re-plenishable
resources can be rapidly reversed by over-harvesting or poaching.

3To keep the experimental design simple, there is no depreciation, so at time t the stock of the public good
is simply the sum of individual investments across all periods up to time t. Battaglini, Nunnari, and Palfrey
(2014) also characterize the efficient path and the equilibrium accumulation paths for arbitrary depreciation
rates, d ∈ [0, 1].
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basis for the main treatment in our experiment: reversibility vs. irreversibility. We also

have a secondary treatment dimension, which is the number of individuals in the game: we

compare n = 3 and n = 5. Thus, the experiment has four different treatments depending on

n and whether investments are reversible.

The main comparative static prediction of the model is that in a Markov equilibrium there

should be greater contributions and a higher equilibrium steady state level of public good in

the irreversible investment economy (IIE) than in the reversible investment economy (RIE).

In contrast, the model predicts no significant difference in public good levels as a function

of n. The data are consistent with these predicted treatment effects (or non-effects, with

respect to n): both in RIE and IIE the accumulation path is inefficiently slow and the public

good under-provided; IIE induces significantly higher public good contributions than RIE;

and public good accumulation does not seem to be significantly affected by n. We do,

however, observe some differences between the finer details of the theoretical predictions and

the data, mainly with respect to the path of convergence to the steady state and individual

investment strategies. In equilibrium, convergence should be monotonic. That is, the stock

of public good should gradually increase over time until the steady state is reached after

which investment is zero. Instead, there is a tendency for initial over-investment in the early

periods, compared to the equilibrium investment levels. In the treatment with reversibility,

this is followed by a significant reversal, i.e., negative investment, with the stock of public

good gradually declining in the direction of the equilibrium steady state. After several

periods of play, the stock of the public good is very close to the Markov equilibrium of

the game. When disinvestment is not feasible, investment steadily decreases but it remains

positive and the long run level of the public good is significantly above the equilibrium steady

state.

In addition to the experiments described above, we propose a new methodology to test

for Markovian behavior in equilibrium. The idea of the new experimental test consists in

designing a one-period experiment where subjects’ payoffs from the public good are given

by the equilibrium value function of the unique concave Markov perfect equilibrium of the

game with reversibility. In this reduced-form version of the game, the individual incentives

to contribute in the public good are exactly the same as in the fully dynamic game (under

the assumption that subjects condition their strategies only on the public good stock), but

there is no possibility to sustain a higher public good outcome through the non-stationary

strategies that can arise in a repeated game. We observe no systematic difference in con-

tributions between this reduced form of the dynamic game and the fully dynamic game.

We conclude that observed behavior in the dynamic game with reversible investment is well

approximated by the predictions of a purely forward looking Markov equilibrium, rather
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than by an equilibrium in which agents use more complicated history-dependent strategies

to punish uncooperative behavior or reciprocate cooperative behavior by other members of

the group.

Our work is related to three distinct strands of research. First, naturally, the experimen-

tal literature on public good provision in static environments. This literature has explored

voluntary contributions under a variety of conditions. The early experiments focused pri-

marily on free riding in environments where there was a dominant strategy for all individuals

to contribute zero to the public good. Variations on these early dominant strategy public

goods games have been conducted in the laboratory under many different assumptions about

utility functions and technology, different subject pools, asymmetric endowments and pref-

erences, different information conditions, different public good mechanisms, variable group

sizes, and so forth. Many of these variations are discussed at length in Ledyard’s (1995) com-

prehensive survey of the seminal work in this area.4 The dynamic environment we study

is fundamentally different from the static environments studied in these papers. We have

already mentioned some of these important differences and will discuss this issue in greater

detail in Section 5, in the context of the results from our experiment.

The second literature to which our work is related consists in the work on sequential

mechanisms for the provision of static public goods. Although in this literature players

play a dynamic game, the purpose of the game is the determination of a one-shot provision

of a discrete public good (Harrison and Hirschleifer 1989; Dorsey 1992; Duffy, Ochs, and

Vesterlund 2007; Cho, Gale and Kariv 2008; Diev and Hichri 2008; Noussair and Soo 2008;

Cho, Gale, Kariv, and Palfrey 2011).5 In the contribution games studied in these papers,

agents have the opportunity to revise their initial contributions over time, and observe the

cumulative level of contributions at each moment. Contrary to our setup, the public good

does not provide any benefit until the game ends. Moreover, when payoffs from the public

good are a continuous function of cumulative contributions, the unique equilibrium of these

mechanisms is not different from the corresponding one-shot games (that is, no contribu-

tion). Only when a certain threshold guarantees a discrete benefit, agents might achieve the

provision of this discrete public good, through history-dependent trigger strategies.

Finally, our work is related to the emerging experimental literature on dynamic stochastic

games in which a state variable provides a strategic link across periods. Early contributions

are Lei and Noussair (2002) and Noussair and Matheny (2000) who experimentally study

single agent dynamic optimization problems. Herr et al. (1997) present a model of resource

4See Chaudhuri (2011) and Vesterlund (2012) for more recent (and more selective) surveys.
5There are also public goods voluntary contribution experiments with reduced-form one-shot payoff func-

tions that are motivated by common pool resource problems. See Ostrom (1999) for a survey.

4



utilization in a finitely repeated environment in which players’ actions have externalities on

the preferences of current and future players. Battaglini and Palfrey (2012) test a dynamic

model of pure redistribution (in which the state variable is the status quo distribution of re-

sources and the amount of resources is constant over time). Battaglini, Nunnari and Palfrey

(2012) study the effect on investments of voting rules in a model of public good accumulation

in which investment is chosen through a non-cooperative bargaining process. To our knowl-

edge Battaglini, Nunnari and Palfrey (2009) is the first paper to present an experimental

study of a dynamic public good game in which players make voluntary contributions. The

results of this working paper are now incorporated in our current paper.6 Following this

paper, Vespa (2012) has provided an alternative test of Markovian behavior in a game of

resource exploitation similar to Herr et al. (1997).7 The results of this paper confirm our

finding that the Markov equilibrium is a good model of behavior in the laboratory. In-

terestingly, however, Vespa observes that the feasibility of cooperation with non-stationary

strategies may depend on the complexity of the action space: cooperation may be possible

with two actions, but not possible already with three. This may suggest that the Markov

equilibrium can do well in environments like ours (with a continuum of actions) because

players find it difficult to deal with non stationary strategies when the action space is non

trivial.

From a theoretical point of view, our work draws on Battaglini Nunnari and Palfrey

(2014) who first characterized the equilibrium in the dynamic public good game that we

study with and without reversibility.8 In our paper we use the characterization presented

there as a basic prediction for the players’ behavior in the laboratory, integrating it with an

analysis of other non stationary equilibria for completeness.

The reminder of this paper is organized as follows. In Section 2 we present the model and

its solutions: the first best solution, the equilibrium when the public good is reversible, the

equilibrium when the public good is irreversible and the equilibrium predictions with non-

stationary subgame perfect equilibria. In Section 3 we describe the experimental design.

6In Battaglini Nunnari and Palfrey (2009) we studied voluntary contribution only in the reversible case.
The results presented in this working paper are now incorporated in the current expanded paper that includes
also the irreversible case.

7Related experiments are presented by Saijo et al. (2009), who focus on an environment with static,
state independent strategies, and Pevnitskaya and Ryvkin (2012), who focus on the effect of environmental
context and termination uncertainty. The theoretical framework and experimental design of these papers do
not allow to investigate the effect of irreversibility on actions.

8Previously, work on the reversible case was done in a framework of a linear differentiable game with
quadratic preferences (Fershtman, C. and S. Nitzan 1991 and Duckner and Long 1993 among others). Con-
tribution games with irreversibility are studied in the literature on monotone games, see Matthews (2012)
(and the references cited there) for a recent comprehensive analysis. These works however assume the players
have a dominant strategy and it can be applied only to special cases that do not include our environment.
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Section 4 discusses the results of the experiment. Section 5 compares the results in our

dynamic environment with the results of previous experiments on static public good games.

Section 6 concludes.

2 The Model

Here we describe a simplified version of the model in Battaglini, Nunnari, and Palfrey (2014),

which we will use in our experimental design. Consider an economy with n agents who

interact for an infinite number of periods. There are two goods: a private good x and a

public good g. The level of consumption of the private good by agent i in period t is xit, the

level of the public good in period t is gt. The utility U j of agent j can be written as:

U j =
∞∑
t=1

δt−1
[
xjt + α

√
gt
]

where δ ∈ [0, 1] is a common discount factor, and α > 0 is a constant. The private con-

sumption good is nondurable, the public good is durable and does not depreciate between

periods. Thus, if the level of public good at time t − 1 is gt−1 and the total investment in

the public good is It, then the level of public good at time t will be

gt = gt−1 + It.

It is convenient to distinguish the state variable at t, gt−1, from the policy choice gt. In

the remainder, we denote yt = gt−1 + It as the new level of public good after an investment

It when the last period’s level of the public good is gt−1. The initial stock of public good is

g0 ≥ 0, exogenously given. Public policies are chosen as in the classic free rider problem.

In each period, each agent j is endowed with w = W/n units of private good and chooses

on its own how to allocate its endowment between an individual investment in the public

good (which is shared by all agents) and private consumption, taking as given the strategies

of the other agents. The key difference with respect to the static free rider problem is that

the public good can be accumulated over time. The level of the state variable g, therefore,

creates a dynamic linkage across policy making periods.

We consider two alternative economic environments. In a Reversible Investment Econ-

omy (RIE), the level of individual investment can be negative, with the constraint that

ijt ∈ [−gt/n,W/n] ∀j, where ijt = W/n − xjt is the investment by agent j.9 In an Ir-

9This constraint guarantees that (out of equilibrium) the sum of reductions in g can not be larger than
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reversible Investment Economy (IIE), an agent’s investment cannot be negative and must

satisfy ijt ∈ [0,W/n] ∀j.

The RIE corresponds to a situation in which the public investment can be scaled back in

the future at no cost. An example can be an art collection or land for common use. The IIE

corresponds to situations in which once the investment is done it cannot be undone. This

seems the appropriate case for investments in public infrastructure (for example, a bridge

or a road), the level of global warming, or less tangible investments like “social capital.”.

In this environment, private consumption cannot be negative and the total economy-wide

investment in the public good in any period is given by the sum of the agent investments.

2.1 The Planner’s Solution

As a benchmark with which to compare the equilibrium allocations, we first analyze the

sequence of public policies that would be chosen by a benevolent planner who maximizes the

sum of utilities of the agents. This is the welfare optimum because the private good enters

linearly in each agent’s utility function.

Denote the planner’s policy as yP (g) and consider first an economy with reversible invest-

ment. As shown by Battaglini, Nunnari, and Palfrey (2014), the objective function of the

planner is continuous, strictly concave and differentiable and a solution of its maximization

problem exists and is unique. The optimal policies have an intuitive characterization. When

the accumulated level of public good is low, the marginal benefit of investing in g is high,

and the planner finds it optimal to invest as much as possible: in this case yP (g) = W + g

and
∑n

j=1 x
i = 0. When g is high, the planner will be able to reach the level of public good

y∗P that solves the planner’s unconstrained problem:

y∗P =

(
αn

2(1− δ)

)2

(1)

The investment function, therefore, has the following simple structure. For g < y∗P −W , y∗P
is not feasible: the planner invests everything and yP (g) = g+W . For g ≥ y∗P −W , instead,

investment stops at yP (g) = y∗P . This investment function implies that the planner’s economy

converges to the steady state yoP = y∗P . In this steady state, without loss of generality, we

can set xi(g) =
(
W + g − yP (g)

)
/n ∀i.10

The planner’s optimum for the IIE case is not very much different. The planner finds it

the stock of g. The analysis would be similar if we allow each agent to withdraw up to g. In this case,
however, we would have to assume a rationing rule in case the individuals withdraw more than g.

10Indeed, the planner is indifferent regarding the distribution of private consumption.
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optimal to invest all resources for g ≤ y∗P −W . For g ∈ (y∗P −W, y∗P ), the planner finds it

optimal to stop investing at y∗P , as before. For g ≥ y∗P , y∗P is not feasible, so it is optimal to

invest 0, and to set yP (g) = g This difference in the investment function for IIE, however,

is essentially irrelevant for the optimal path and the steady state of the economy. Starting

from any g0 lower than the steady state y∗P , levels of g larger or equal than y∗P are impossible

to reach, and the irreversibility constraint does not affect the optimal investment path.

2.2 Reversible Investment Economies

We first describe equilibrium behavior when the investment in the public good is reversible.

We focus on continuous, symmetric Markov-perfect equilibria, where all agents use the same

strategy, and these strategies are time-independent functions of the state, g. A strategy is a

pair (x(·), i(·)): where x(g) is an agent’s level of consumption and i(g) is an agent’s level of

investment in the public good in state g. Associated with any equilibrium is a value function

vR(g) which specifies the expected discounted future payoff to an agent when the state is

g. The optimization problem for agent j if the current level of public good is g, the agent’s

value function is vR(g), and other agents’ investment strategies are given by xR(g), can be

represented as:

max
y,x


x+ α

√
g + δvR(y)

s.t x+ y − g = W − (n− 1)xR(g)

W − (n− 1)xR(g) + g − y ≥ 0

x ≤ g/n+W/n

 (2)

Contrary to the planner, agent j cannot choose y directly: it chooses only its level of

private consumption and the level of its own contribution to the public investment. The

agent, however realizes that given the other agents’ level of private consumption (n−1)xR(g),

his/her investment ultimately determines y. It is therefore as if agent j chooses x and y,

provided that he satisfies the feasibility constraints. The first constraint is the resource

constraint: it requires that total resources, W , are equal to the sum of private consumption,

(n − 1)xR(g) + x, plus the public investment, y − g. The second constraint requires that

private consumption x is non negative. The third constraint requires that no agent can

reduce y by more than his share g/n.

In a symmetric equilibrium, all agents consume the same fraction of resources, so agent

j takes as given that in state g the other agents each consume:

xR(g) =
W + g − yR(g)

n
,
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where yR(g) is the equilibrium level of investment in state g. Substituting the first constraint

of (2) in the objective function, recognizing that agent j takes the strategies of the other

agents as given, and ignoring irrelevant constants, the agent’s problem can be written as:

max
y

{
α
√
y − y + δvR(y)

y ≤ W+g
n

+ n−1
n
yR(g), y ≥ n−1

n
yR(g)

}
(3)

where it should be noted that agent j takes yR(g) as given.11 The objective function shows

that an agent has a clear trade off: a dollar in investment produces a marginal benefit
α

2
√
g

+ δv′R(y), the marginal cost is −1, a dollar less in private consumption. The first

constraint shows that at the maximum the agent can increase the investment of the other

players (i.e., n−1
n
yR(g)) by W+g

n
. The second constraint makes clear that at most the agent

can consume his endowment W/n and his share of g, g/n.

We restrict attention to equilibria in which the objective function in (3) is strictly concave,

and we refer to these equilibria as concave equilibria. Depending on the state g, the solution

of (3) falls in one of two cases: the first case corresponds to the situation where the first

constraint in (3) is binding, so all resources are devoted to investment in the public good.

In this case, xR(g) = 0, yR(g) = W + g, and investment by each agent is iR(g) = W
n

.

In the second case, private consumption is positive, that is xR(g) > 0, and the solution

is characterized by a unique public good level y∗R =
(

αn
2(n−δ)

)2
. In this second case, the

investment by each agent is equal to iR(g) = 1
n

[y∗R − g] and per capita private consumption

is xR(g) =
W+g−y∗R

n
> 0. The first case is possible if and only if W ≤ y∗R − gR, that is, if g

is below some threshold gR defined by: gR = max {y∗R −W, 0}. We summarize this in the

following proposition, which also proves the existence of an equilibrium and its uniqueness

when vR(g) is strictly concave:

Proposition 1. In the game with reversible investment, a strictly concave equilibrium exists

and it is unique. In this equilibrium, public investment is: yR(g) = min {W + g, y∗R} where

y∗R =
(

αn
2(n−δ)

)2
< y∗P .

Proof. See Appendix A.

The public good function yR(g) is qualitatively similar to the corresponding planner’s

function yP (g). The main difference is that y∗R < y∗P and gR < gP , so public good provision

is typically smaller (and always smaller in the steady state). This is a dynamic version of

the usual free rider problem associated with public good provision: each agent invests less

11Since yR(g) is the equilibrium level of investment, in a symmetric equilibrium (n−1)yR(g)/n is the level
of investment that agent j expects from all the other agents, and that he/she takes as given in equilibrium.
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than is socially optimal because he/she fails to fully internalize all agents’ utilities. Part of

the free rider problem can be seen from (3): in choosing investment, agents count only their

marginal benefit, u′(y) + δv′R(y), rather than nu′(y) + δnv′R(y), but all the marginal costs

(−1). In this dynamic model, however, there is an additional effect that reduces incentives

to invest, called the dynamic free rider problem. A marginal increase in g has two effects.

An immediate effect, corresponding to the increase in resources available in the following

period: g. But there is also a delayed effect on next period’s investment: the increase in g

triggers a reduction in the future investment of all the other agents through an increase in

xR(g): for any level of g > gR, yR(g) will be kept at y∗R. In a symmetric equilibrium, if agent

j increases the investment by 1 dollar, he will trigger a reduction in future investment by all

agents by 1/n dollars; the net value of the increase in g for j will be only δ/n.

2.3 Irreversible Investment Economies

When the stock of the public good cannot be reduced, the optimization problem of an agent

can be written like (2), but with an additional constraint: the individual level of investment

cannot be negative or, in other words, each agent’s private consumption cannot exceed his

endowment, xi(g) ≤ W/n. Following similar steps as before, we can write the maximization

problem faced by an agent as:

max
y

{
α
√
y − y + δvIR(y)

y ≤ W+g
n

+ n−1
n
yIR(g), y ≥ g + n−1

n
(yIR(g)− g)

}
(4)

where the only difference with respect to (3) is the second constraint: the new level of public

good cannot be lower than g plus the investments from all the other agents.

As pointed out in Section 2.1, when public investments are efficient, irreversibility is

irrelevant for the equilibrium allocation. The investment path chosen by the planner is

unaffected because the planner’s choice is time consistent : he never finds it optimal to

increase g if he plans to reduce it later. In the concave equilibrium characterized in the

previous section, the investment function may be inefficient, but it is weakly increasing in

the state. Agents invest until they reach a steady state, and then they stop. It may seem

intuitive, therefore, that irreversibility is irrelevant in this case too, but this intuition is not

correct. To the contrary, irreversibility destroys the concave equilibrium we characterized

for reversible investment economies and induces the agents to significantly increase their

investment, leading to a significantly higher unique steady state. Intuitively, the reason

is that the agents no longer have to worry about the dynamic free rider problem: the

irreversibility constraint creates a “commitment device” for the future; the agents know that
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g cannot be reduced by the others (or their future selves).

Proposition 2. In an economy with irreversible investment, a weakly concave equilibrium

exists. Any weakly concave equilibrium, moreover, is associated to the same unique steady

state equal to y∗IR =
(

α
2(1−δ)

)2
. This steady state level is strictly greater than y∗R and strictly

smaller than y∗P for any n > 1 and any δ ∈ [0, 1).

Proof. See Appendix A.

The first part of Proposition 2 follows directly as a special case of Propositions 1 in

Battaglini, Nunnari, and Palfrey (2014), where it is established that the dynamic free rider

game with irreversibility admits an equilibrium with standard concavity properties. The

second part, uniqueness of the steady state, is established in Appendix A. In this steady

state, the public good stock is strictly smaller than the one accumulated by a benevolent

planner, but strictly higher than the one accumulated in the unique concave equilibrium of

RIE. This steady state, y∗IR =
(

α
2(1−δ)

)2
, is exactly the same level that an agent alone would

accumulate and it is independent of n.

The equilibrium selection based on Markov strategies therefore leads to a clear prediction

that the irreversibility of investment will generate a higher level of investment in each period,

as well as a higher steady state of the public good. The intuition for this is straightforward:

the impossibility to convert today’s investment back into private consumption at a future

dates, eliminates worries about future agents’ incentives to plunder the current public good

investments. In other words, irreversibility mitigates the dynamic free rider problem. More-

over, the investment function in the equilibrium described in Proposition 2 is different than

the one for the reversible investment case, where the agents would either find it optimal to

invest everything, or just enough to reach the steady state. In contrast, in the irreversible

investment case, the investment function increases gradually over time12, and the steady

state is reached only asymptotically.

2.4 Cooperation Using Non-Stationary Strategies

We have restricted our attention to symmetric Markov perfect equilibria. However, the vol-

untary contribution game we study is an infinite horizon dynamic game with many subgame

perfect equilibria. The Markovian assumption of stationary strategies is very restrictive and

12This property of gradually increasing contributions in our model is reminiscent of a property of the
repeated game equilibria found elsewhere in the literature (see, for example, Marx and Matthews 2010),
but the intuition behind it is quite different. Here gradualism is needed in order to smooth out the value
function of the Markov equilibrium at the steady state, while elsewhere gradualism follows from the non-
Markov repeated game strategies that are used to enforce efficient equilibria.
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it is possible that some other equilibria can sustain more efficient outcomes through the use

of history-dependent strategies that use punishments and rewards for past actions. As we

show below, in economies with reversible investment, the optimal solution can indeed be

supported as the outcome of a subgame perfect equilibrium:

Proposition 3. There is a δ̂R ∈ [0, 1) such that, for all δ > δ̂R, the efficient investment

path characterized by the optimal solution is a Subgame Perfect Nash Equilibrium of the

voluntary contribution game with reversible investment.

In Appendix A, we derive non-stationary strategies for the voluntary contribution game

with reversible investment whose outcome is the efficient level of public good (the optimal

solution), and show that these strategies are a subgame perfect Nash equilibrium.13

The strategy for each agent is to allocate the optimal level of investment to public good

production, (y∗P (g) − g)/n, and to consume the remainder. A deviation from this invest-

ment behavior by any agent is punished by reversion to the unique concave Markov perfect

equilibrium characterized in Section 2.2. This is a simple strategy that involves the harshest

individually rational punishment for deviation from cooperation: whenever g > y∗R and a

deviation is observed, the public good will revert to y∗R and it will stay at this level for all

future periods.

When investment is irreversible, the efficient outcome cannot be sustained with strategies

similar to the ones proposed above for environments with reversible investment. Matthews

(2013) shows that, with discounting, no subgame perfect equilibrium of a general family of

dynamic contribution games is efficient, in the sense of supporting the optimal public good

stock in each period. In particular, that result applies to our environment, implying the

following proposition as corollary.

Proposition 4. There is no δ̂IR ∈ [0, 1) such that, for all δ > δ̂IR the optimal investment

strategies are a Subgame Perfect Nash Equilibrium of the voluntary contribution game with

irreversible investment.

The intuition behind Proposition 4 is that the potential for punishment is significantly

dampened by the irreversibility constraint. Whenever g > y∗IR and a deviation is observed,

agents cannot disinvest down to y∗IR and the harshest punishment is characterized by no

investment and a constant stock in all periods following the first deviation.

Since many equilibria generally exist, a refinement is always needed for comparative

13Our goal is to show that the optimal solution is the outcome of some subgame perfect Nash equilibria of
the game. We do not claim that the strategies proposed in the proof of Proposition 3 are the best punishment
schemes, and there may be different non-stationary strategies that work for lower δ.
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statics or policy evaluation. It is standard practice in applied work to use as solution

concept the most efficient subgame perfect equilibrium (in our model the solution with the

highest investment in g). The propositions presented above are important because they

allow us to cleanly separate the time path of investment behavior implied by the Markov

equilibrium discussed in the previous section from the time path of investment behavior

in the best subgame perfect (non-Markov) equilibrium. Let gM,R
t and gM,IR

t denote the

equilibrium stock of accumulated public good at time t in the Markov equilibria discussed

in the previous section with reversibility and irreversibility, respectively. Let gS,Rt and gS,IRt

corresponding stock of accumulated public good observable at time t in the best subgame

perfect equilibrium. We have:

Corollary 1. There is a δ∗ ∈ [0, 1) such that, for δ > δ∗ we have:

• gM,R
t < gM,IR

t on the equilibrium path.

• gS,IRt ≤ gS,Rt on the equilibrium path.

The first bullet point can be established using Propositions 1 and 2, while the second bullet

point follows from Propositions 3 and 4. Corollary 1 establishes that the comparative static

predictions implied by the two different equilibrium concepts (Markov vs. best SPE) are

completely opposed with respect to the effect of reversibility vs. irreversibility on investment.

This theoretical insight thus provides two starkly opposite predictions about efficiency that

will be useful for interpreting the results of the experiment.

3 Experimental Design

The experiments were all conducted at the Social Science Experimental Laboratory (SSEL)

using students from the California Institute of Technology. Subjects were recruited from a

pool of volunteer subjects, maintained by SSEL. Eight sessions were run, using a total of

105 subjects. No subject participated in more than one session. Half of the sessions were for

Reversible Investment Economies and half for Irreversible Investment Economies. Half were

conducted using 3 person groups, and half with 5 person groups. In all sessions the discount

factor was δ = 0.75, and the multiplier of the current-period payoff from the public good was

α = 4, that is, u(g) = 4
√

(g). In the 3 person groups, we used the parameters W = 60, while

in the 5 person groups W = 80. It is useful to emphasize that, as proven in the previous

sections, given these parameters the steady state is uniquely defined both for the RIE and

IIE game and for all treatments: so the theoretical predictions of the convergence value of g

is independent of the choice of equilibrium.
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Discounted payoffs were induced by a random termination rule by rolling a die after each

period in front of the room, with the outcome determining whether the game continued

to another period (with probability .75) or was terminated (with probability .25). The

n = 5 sessions were conducted with 15 subjects, divided into 3 groups of 5 members each.

The n = 3 sessions were conducted with 12 subjects, divided into 4 groups of 3 members

each.14 Groups stayed the same throughout the periods of a given match, and subjects were

randomly rematched into groups between matches. A match consisted of one multi-period

play of the game which continued until one of the die rolls eventually ended the match.

As a result, different matches lasted for different lengths (that is, for a different number of

periods). In all sessions, subjects interacted for 10 matches. Table 1 summarizes the design

and the theoretical properties of the equilibrium for the four treatments.

Treatment n W Sessions Subjects Groups y∗MPE y∗P

RIE 3 60 2 21 70 7.11 576

RIE 5 80 2 30 60 5.54 1600

IIE 3 60 2 24 80 64 576

IIE 5 80 2 30 60 64 1600

Table 1: Experimental Design, Equilibrium and Planner Steady States

Before the first match, instructions15 were read aloud, followed by a practice match and

a comprehension quiz to verify that subjects understood the details of the environment

including how to compute payoffs. The current period’s payoffs from the public good stock

(called project size in the experiment) was displayed graphically, with stock of public good on

the horizontal axis and the payoff on the vertical axis. Subjects could click anywhere on the

curve and the payoff for that level of public good appeared on the screen. Subjects received

information about the total investment in the public good as well as about the individual

investments of other subjects in their group, at the end of each period. At the end of the

last match each subject was paid privately in cash the sum of his or her earnings over all

matches plus a show-up fee of $10. Earnings ranged from approximately $20 to $50, with

sessions lasting between one and two hours. There was considerable range in the earnings

and length across sessions because of the random stopping rule.

14One of the N = 3 sessions used 9 subjects.
15Sample instructions are reported in Appendix C. Subject decisions, interactions, and feedback

were implemented in a computer network using the open source interactive game software, Multistage
(http://software.ssel.caltech.edu/).
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4 Experimental Results

4.1 Public Good Outcomes

We start the analysis of the experimental results by looking at the long-run stock of public

good by treatment. We consider as the long-run stock of public good, the stock reached by

a group after 10 periods of play.16 Table 2 compares the theoretical and observed levels of

public good by treatment. In order to aggregate across groups, we use the median level of

the public good from all groups in a given treatment at period 10 (y10
mdn). Similar results

hold if we use the mean or other measures of central tendency.17 We compare this to the

stock predicted by the Markov perfect equilibrium of the game after 10 periods (y10MP ), and

to the stock accumulated in the optimal solution after 10 periods (y10P ).

.

Treatment n y10mdn y10MP y10P
Reversible Investment (RIE) 3 10.0 7.11 576

Reversible Investment (RIE) 5 22.0 5.54 800

Irreversible Investment (IIE) 3 293.5 43.64 576

Irreversible Investment (IIE) 5 367.0 42.20 800

Table 2: Long-Run Stock of Public Good, Theory vs. Results

How do groups get to these stocks of public good? Figures 1 and 2 give us a richer picture,

showing the time series of the stock of public good by treatment.18 The horizontal axis is

the time period and the vertical axis is the stock of the public good. As in Table 2, we use

the median level of the public good from all groups in a given treatment.19 Superimposed

on the graphs are the theoretical time paths corresponding to the Markov perfect equilibria

(represented with dashed lines) and to the optimal solution. Table 2, Figure 1 and Figure

16In the experiment, the length of a match is stochastic and determined by the roll of a die. No match
lasted longer than 17 periods and we have very few observations for periods 11-17.

17In Appendix B, we report averages, medians and standard errors of the stock of the public good by
period for each treatment. The statistical tests in the remainder of this section compare average stocks
between different treatments using t-tests and their underlying distributions using Wilcoxon-Mann-Whitney
tests.

18These and subsequent figures show data from the first ten periods. Data from later periods (11-13 for
RIE and 11-17 for IIE) are excluded from the graphs because there were so few observations. The data from
later periods are reported in Appendix B and included in all the statistical analyses.

19Figure 1, by showing the median time path of the stock of public good, masks some of this heterogeneity.
Figure 6, reported in Appendix B, illustrates the variation across groups by representing, for each period,
the first, second and third quartile of investment levels for each treatment. Figure 6 shows that there was
remarkable consistency across groups, especially considering this was a complicated infinitely repeated game
with many non-Markov equilibria.
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(b) n = 5

Figure 1: Median Time Paths of the Stock of g, RIE vs. IIE.

2 exhibit several systematic regularities, which we discuss below in comparison with the

theoretical time paths.

FINDING 1. Irreversible investment leads to higher public good production

than reversible investment. According to t-tests and Wilcoxon-Mann-Whitney tests20,

the average stock of public good is significantly lower in RIE than in IIE in every single

period. This difference is statistically significant at the 1% level (p < 0.01) for periods 1-10

for both group sizes. Not only are the differences statistically significant, but they are large

in magnitude. The median stock of public good is many times greater in the IIE treatment

than in the RIE treatment, averaged across all periods for which we have data (177 in IIE

vs. 29 in RIE for n = 3; 155 in IIE vs. 43 in RIE for n = 5 ). The difference between the two

treatments is relatively small in the initial periods, but it increases sharply as more periods

are played. By period 10, the difference is very large (293.5 vs. 10 for n = 3 and 367 vs. 22

for n = 5.).

FINDING 2. Both reversible and irreversible investment lead to significantly

inefficient long-run public good levels. The optimal steady state is y∗ = 576 for n = 3

and y∗ = 1600 for n = 5, and the optimal investment policy is the fastest approach: invest

W in every period until y∗ is achieved. After 10 periods, the median stock of public good

20The p-values associated with these tests are reported in the Appendix B. The null hypothesis of a t-test
is that the averages in the two samples are the same. The null hypothesis of a Wilcoxon-Mann-Whitney test
is that the underlying distributions of the two samples are the same. We are treating as unit of observation
a single group. The results are unchanged if we cluster the standard errors of the t-tests by group.
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Figure 2: Median Time Paths of Normalized Efficiency, RIE vs. IIE.

achieved with the optimal investment trajectory is 576 with n = 3 and 800 with n = 5.

In the experiments, the median stock of public good levels out at about 13 (n = 3) or 33

(n = 5) under reversible investment economies, while it keeps growing, but at an inefficiently

slow pace, under irreversible investment. The median stock in periods 8-10 is 13 in RIE with

n = 3, 33 in RIE with n = 5, 295.5 in IIE with n = 3, and 344 in IIE with n = 5. In

all treatments, the average stock of public good in periods 8-10 is significantly smaller than

the level predicted by the optimal solution (the level attainable investing W each period)

according to the results of a t-test on the equality of means (p < 0.01).

FINDING 3. In IIE, the efficiency of long-run public good levels is midway

between the planner solution and the prediction of the MPE. In RIE, efficiency

converges to the level predicted by the MPE. For each period t, we define a normalized

efficiency measure as Et =
(yt−ytMP )

(ytP−y
t
MP )

. We use ytMP , the public good stock predicted by the

MPE, as the lower bound for efficiency and ytP , the public good stock in the planner solution,

as the upper bound. Figure 2 shows the evolution of Et over time for the two treatments.

In periods 8-10, the median of Et is 0.01 (n = 3) or 0.04 (n = 5) with reversible investment

and 0.52 (n = 3) or 0.45 (n = 5) with irreversible investment. We highlight two results.

First, IIE is several orders of magnitude more efficient than RIE. Second, RIE efficiency is

essentially at the lower bound in the long run, indicating convergence to the prediction of

the MPE, while IIE efficiency is always very high.21

21Both reversible and irreversible investment lead to normalized efficiency level significantly different from
0, that is, the efficiency level predicted by the MPE. As discussed above, while this difference is large for
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From Proposition 3, we know that, for the parameters of the experiment, almost efficient

levels of the public good can be supported as the outcome of the RIE game using non-

stationary strategies.22 In the IIE games, on the other hand, the optimal solution cannot

be supported by any subgame perfect equilibrium with non-stationary strategies when there

is discounting. This is in stark contrast with the unique Markov perfect equilibria derived

in Sections 2.2 and 2.3, which predict the opposite comparative static: the long run level of

the public good is predicted to be ten times as large with irreversible investment than with

reversible investment.

The analysis of the public good outcomes suggests that the predictions of the Markov

perfect equilibrium are substantially more accurate than the prediction of the “best” subgame

perfect equilibrium (that is the Pareto superior equilibrium from the point of view of the

agents) for what concerns the long-run stock of public good in RIE and the difference between

storage technology. On the the other hand, the MPE that we have adopted as benchmark

does not capture finer details of the data, as the initial levels of investment and the long run

stock of public good in IIE. In Section 4.2, we explore these discrepancies by focusing on

individual investing behavior.

4.2 Investing Behavior

How much do individual agents invest in the public good? Figure 3 shows the time series

of the median investment in the public good by treatment. The horizontal axis is the time

period and the vertical axis is the investment in the public good. The maximum amount

each agent can allocate to investment is the same in each period, and it is given by W/n,

which is equal to 20 for n = 3 and 16 for n = 5. The minimum amount each agent can

invest is always zero in the irreversible investment treatment, but it depends on the stock

at the beginning of the period in the reversible investment treatment (since each agent can

disinvest up to g/n units of the public good). For each period, we use the median level of

individual investment from all subjects in a given treatment. Similar results hold if we use

the mean or other measures of central tendency.

Figure 3 shows a series of interesting patterns. First, the median individual investment

is always higher with irreversible investment than with reversible investment in periods 1-10.

IIE, it is negligible and not economically significant for RIE.
22With the parameters of the experiment, the public good stock sustainable with the non-stationary

strategies proposed in the proof of Proposition 3 is 520 (vs. an efficient level of 576) for n = 3 and 1404
(vs. an efficient level of 1600) for n = 5. This steady state is reached in 9 periods (with investment equal to
W = 60 in the first 8 periods) for n = 3 and in 18 periods (with investment equal to W = 80 in the first 17
periods) for n = 5.
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Figure 3: Median Individual Investment.

Second, the level of investment is decreasing, with median investment converging quickly to

values around zero for the reversible investment economies and steadily decreasing towards

zero for the irreversible economies.

How do these levels of individual investment compare to the theoretical predictions? The

median time paths from Figure 3 are qualitatively in line with the predicted time paths:

with reversible investment, the theory predicts positive investment only in the first period

(when the equilibrium steady state is reached) and zero investment from the second period

on; with irreversible investment, the theory predicts positive investment in each period,

but at a monotonically decreasing pace (with convergence to the equilibrium steady state

only asymptotically). There are, however, some differences between the finer details of the

theoretical predictions and the data. We observe over-investment in the early periods: while

individual investment is predicted to be less than 4 units in the first period for all treatments,

we observe medians between 10 and 18. In the reversible economies, this over-investment is

corrected in the later periods: the median investment falls sharply to zero or below and a

large fraction of individuals disinvests, with higher early over-investment followed by higher

disinvestment.23

23Tables 4 and 5 in Appendix B show the breakdown of investment decisions for the four treatments into
three canonical types: (1) Positive Investment ; (2) Zero Investment ; and, for RIE, (3) Negative Investment.
In all treatments, most allocations involve positive investment in the public good. In RIE, positive investment
accounts for 67% (n = 3) or 52% (n = 5) of all decisions; in IIE, this type accounts for 83% (for both group
sizes). The difference is mostly due to the negative investment allocations which are not allowed in IIE but
make up 26% (for n = 3) or 36% (for n = 5) of all decisions. If we break down these categories by periods
in more detail, the proportion of positive (negative) decisions decreases (increases) with the period of play,
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Figure 4: Median Difference with MPE Investment.

The game we study is a dynamic game with an evolving state variable. It follows that, to

better compare the observed level of investment with the theoretical predictions, we need to

take into account the state variable faced by each agent when making an allocation decision,

that is the stock of the public good at the beginning of a period. For each subject in

each period, we calculate the difference between his observed behavior and the investment

predicted by the theory given the public good stock in his group in that period. Figure 4

shows the time series of the median of this difference. This series starts out significantly

above zero for all treatments but decreases as more periods of the same match are played,

suggesting that subjects’ decisions respond to the evolution of the state variable. Notice

that this pattern leads to public good outcomes that are in line with MPE steady states for

reversible economies, but not for irreversible economies: in the former, subjects can correct

the initial over-investment with negative investment, while in the latter the equilibrium

investment for any level above the steady state (64) is bound to be zero and the initial

over-investment persists. We summarize these findings below.

FINDING 4. In both treatments, there is over-investment relative to the

equilibrium in the early periods. This is followed by negative investment ap-

proaching the theoretical predictions in RIE, while the over-investment decreases

but persists in IIE. In all treatments, groups overshoot the equilibrium in early periods:

the difference between the average investment in periods 1-2 and the predicted investment

within a single match.
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in these same periods is statistically significant at the 1% level for all treatments. In RIE,

this overshooting is largely corrected in later periods via disinvestment. When investment is

reversible, convergence of the public good stock is close to equilibrium, with the difference

between the median public good levels and the equilibrium public good levels in the last

4 periods of data measuring around 6 units of the public good with n = 3 and around 27

units with n = 5. In IIE, investment remains positive but is monotonically decreasing with

periods of play (in the same match).24 Given the public good stock by the end of period 2 is

already above the predicted steady state level (64), the positive - albeit slower - investment

flow in the following periods brings the long-run level of public good to be four (280.5 vs.

64 for n = 3) and five times (324 vs. 64 for n = 5) larger than predicted. The difference

between the average public good stock and the predicted public good stock in periods 6-10

is statistically significant at the 1% level.

4.3 The Effect of Group Size

According to the theory, the public good accumulation and the individual investment be-

havior are not sensitive to the group size. We discuss below the difference in public good

accumulation between three-members and five-members groups.

FINDING 5. Public good accumulation is higher in five members groups than

in three member groups. This difference, however, is statistically significant only

in the initial periods. For the same accumulation mechanism (reversible or irreversible

investment), the average and median stock of public good is higher with five members groups

than with three members groups in every single period. However, this difference is small in

magnitude (especially for the earlier periods and for the reversible investment games) and,

according to t-tests25, statistically significant at conventional levels (p < 0.05) only for the

first two periods in RIE, and the first four periods in IIE. This is in line with the Markovian

equilibria discussed in the previous section, which predict small differences between the two

group sizes. In RIE, the stock is predicted to converge quickly to similar steady state levels

(7.11 and 5.54). In IIE, while the steady state levels are predicted to be exactly the same

(64), the equilibrium investment trajectory is somewhat slower with larger groups. However,

the differences induced by the different group sizes are small, with the predicted stock after

10 periods equal to 42.20 with five members groups and 43.64 with three members groups.

FINDING 6. Individual investment behavior is unchanged across different

24Recall that in the IIE equilibrium, contribution is predicted to be positive in every period, and to
monotonically decline to 0.

25Similar results are obtained using Wilcoxon-Mann-Whitney tests.
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group sizes. Table 3 shows the results of Tobit estimates of individual investment decisions

as a function the public good stock at the beginning of the period and the size of the group,

keeping constant the storage technology. To take into account the different budget available

to subjects in different treatments (20 for n = 3, 16 for n = 5), we use as dependent variable

the share of the budget invested in the public good. The dummy for large groups and the

interaction variable between this dummy and the public good stock are not significant at

the conventional levels (p < 0.05). This suggests that there is no difference between the two

group sizes in the average individual investment, as well as in the sensitivity of investments

to the accumulated level of public good.

(1) (2)

Treatment RIE IIE

Public Good Stock -0.007** -0.001**

(0.002) (0.0003)

Large Group 0.084 -0.136

(0.107) (0.130)

Large Group*Public Good Stock 0.002 0.001

(0.002) (0.0005)

Constant 0.369** 0.815**

(0.055) (0.079)

Pseudo-R2 0.0368 0.0130

Observations 1935 3456

Table 3: TOBIT estimates for fraction of individual budget invested in the public good. SE

clustered by subject in parentheses; * significant at 5% level; ** significant at 1% level.

4.4 The Effect of Experience

Within the same match, subjects’ investing behavior gets closer to the predictions as more

periods are played. It is therefore natural to ask whether we observe a similar pattern across

matches. Do subjects choose allocations closer to the predictions of the Markov equilibria

when they are more experienced? Or do they still over-invest in early periods and reduce

investment in later periods, even after many matches of the same (multi-period) game?

FINDING 7. In reversible investment treatments, public good accumulation

is not affected by experience. In the irreversible investment treatments, invest-

ment levels are higher in later matches. We compare the average public good stock in
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each period in early (1–5) versus late (6–10) matches. In RIE, as subjects play more matches

within the same session the average stock of the public good is not significantly altered in

any period, according to t-tests on the equality of averages clustered by individuals. In IIE,

as subjects play more matches within the same session, the accumulated levels of the public

good grow larger: the average public good stocks are higher in late matches for all periods

in both group sizes. With n = 3, this difference is statistically significant at the 1% level

in periods 1-9, at the 10% level in period 10. With n = 5, this difference is statistically

significant at the 1% level in periods 1, at the 5% level in periods 2 and 3.

(1) (2) (3) (4)

Treatment RIE3 RIE5 IIE3 IIE5

Public Good Stock -0.173** -0.168** -0.025** -0.014**

(0.034) (0.029) (0.010) (0.005)

Late Matches -2.687* -2.227 9.876** 2.897*

(1.290) (1.489) (2.046) (1.446)

Late Matches*Public Good Stock -0.004 0.048 -0.022 -0.007

(.071) (0.033) (0.014) (0.008)

Constant 10.263** 13.686** 16.393** 18.442**

(1.244) (2.277) (2.735) (2.633)

Subject FE YES YES YES YES

Pseudo-R2 0.0461 0.0496 0.1821 0.2187

Observations 705 1230 1716 1740

Table 4: TOBIT estimates for individual investment decisions. SE clustered by groups in

parentheses; * significant at 5% level; ** significant at 1% level.

FINDING 8. Individual investment behavior is affected by experience: the

average individual investment in later matches is lower in RIE, higher in IIE.

Table 4 shows the results of Tobit estimates of individual investment decisions as a function

the public good stock at the beginning of the period and whether we are in early or late

matches, keeping constant the storage technology and group size. To take into subjects’

heterogeneity, we use subjects’ fixed effects. The dummy for late matches is significant for

all treatments but RIE with 5 members. This suggests that average individual investment

is significantly different in early and late matches (higher in late matches for IIE, with

both group sizes; lower in late matches for RIE with three members). The interaction

variable between the late matches dummy and the public good stock is not significant at the
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conventional levels (p < 0.05). This suggests that there is no difference between early and

late matches in the the sensitivity of investments to the accumulated level of public good..

4.5 A Direct Test of Markovian Behavior

The final questions we attempt to address are: To what extent are the models we use adequate

to study this problem? What equilibrium concepts should be used? This is a particularly

important question since, depending on the equilibrium concept, we can have very different

predictions for the same model. While it is difficult to identify the equilibrium adopted by

players, the analysis of public good outcomes and investing behavior provides some insights.

As discussed above, we observe a consistent pattern of behavior across groups, despite the

fact that we have multiplicity of potential equilibria; the investing behavior is correlated to

the evolution of the stock in a way predicted by the theory; and, at least for RIE, the long

term public good outcomes are close to the equilibrium steady states.

To further pursue this question, we construct a more direct test of the Markovian restric-

tion, that is, of the assumption that players are forward-looking and condition their strategy

only on the stock of the public good at the beginning of the period, irrespective of the histo-

ries. In particular, we conduct a one-period version of the reversible investment game, where

the payoffs from the public good stock are complemented by the equilibrium value functions

of the unique concave Markov perfect equilibrium of the game. In each one-period game,

agent j receives the following payoff:

U j(xj, y) = xj + α
√
y + δvR(y),

where xj is the private consumption of agent j, y is the end-of-period public good stock,

and δvR(y) is the discounted equilibrium value function from the dynamic game with re-

versible investment.

In each experimental session, subjects play for 40 matches. Contrary to the dynamic

game, the length of each match is known and equal to one period. At the end of each one-

period match, subjects are reshuffled into new groups and the public good stock starts out

at a (potentially different) exogenous level. We use eight different g0, to elicit an investment

strategy (as a function of the state variable) comparable to the one observed in the fully
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dynamic game. Table 5 below summarizes the experimental design.

.

n W Groups Subjects g0

3 60 80 24 0, 5, 10, 15, 20, 25, 30, 35

5 80 60 30 0, 5, 10, 15, 20, 25, 30, 35

Table 5: Experimental Design, One-Period Reduced Form Treatments.

In each experimental session, each of the eight values of g0 is used in five different matches,

in random order, for a total of forty matches. The range [0− 35] covers around 75% of ob-

servations in the dynamic game with three-members groups and around 55% of observations

in the dynamic game with five-members groups. In the one-period reduced form treatments,

the unique equilibrium of the game prescribes the same investment level predicted for the

fully dynamic game under the Markovian assumption that subjects condition their strategies

only on the public good stock. While there is no other equilibrium in this one-period game,

in the fully dynamic game there is a plethora of different subgame perfect equilibria that can

sustain higher level of investment with non-stationary strategies. Therefore, if we observe

similar behavior in the two treatments, we consider this as evidence of Markovian strategies

in the fully dynamic game. On the other hand, we can attribute differences in behavior to

the non-stationary strategies that can arise in a repeated game.

Figure 5 illustrates the median individual investment as a function of the initial stock for

the one-period reduced-form games described above and for the fully dynamic games.26

FINDING 9. For intermediate values of public good stock, the dynamic and

static experiments produce similar results, which are consistent with Markovian,

forward-looking behavior; for extreme values of the stock, the dynamic experi-

ment produces higher level of contributions. For three-members groups, investment

is significantly higher in the dynamic treatment for initial stocks of 0, 25, 30, and 35, and

statistically indistinguishable for the remaining initial stocks. For five-members groups, in-

vestment is significantly higher in the dynamic treatment for initial stocks of 0, 25, and 35;

it is significantly higher in the reduced form treatment for initial stocks of 5, 10, and 20; and

it is statistically indistinguishable for the remaining initial stocks (15 and 30). While there

26Since the beginning-of-period stock in the dynamic games is endogenous and does not necessarily match
the values used in the one-period games, for these games we use the median investment levels for all periods-
groups that started with a public good stock in a 6 experimental units interval around the starting size used
in the one-period games. For example, the median investment corresponding to a beginning-of-period stock
of 20 is computed as the median investment from all periods-groups starting at a stock between 17 and 23.
This allows us to have a comparable number of observations between one-period and dynamic games. The
results are the same when we use intervals of 8 or 10 experimental units.
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Figure 5: Median Investment as a Function of Beginning-of-Period Stocks, Reduced Form
Treatment vs. Dynamic Treatment.

is some significant difference, these differences are small in magnitude (with the exception of

initial stocks greater than 25 for n = 3), and we cannot conclude that investment is higher in

the fully dynamic game than in the reduced form game (as a consequence of non-stationary

strategies). As shown by Figure 5, the median investment in the one-shot treatment is in

the interquartile range of the investment observed in the dynamic treatment for all initial

stocks in both treatments, with the exception of an initial stock of 35 for the three-members

groups. Regarding the high investment in the dynamic treatment for three-member groups

and stocks greater than 25, this is due to a few groups who invested significantly more heav-

ily than predicted by the Markov perfect equilibrium, but this only happened rarely and

most of the observations from the dynamic treatment (where the initial public good stock is

endogenous) have a beginning-of-period stock smaller than 25.27

5 Static versus Dynamic: What Have We Learned?

While this is the first experimental study of the dynamic accumulation process of a durable

public good, a vast experimental literature has addressed the provision of public goods in

27Since the beginning-of-period stock in the dynamic treatment is endogenous we have a reduced number
of observations for these high values: we use only 10 groups to compute the median investment for a starting
stock of 35. The remaining 60 groups never accumulated these levels of public good. The beginning-of-period
stock is smaller than 25 in 60% of observations (regardless of period number). The average beginning-of-
period public good stock in periods 8-10 (that is, the long run level of public good) is 18.4.
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static environments. This begs the following questions: How do the results from our dynamic

public good experiments compare to the results from the repeated static public good games?

What new insights can we learn breaking out from the static framework?

Comparing directly our dynamic game with the static framework used by the previous

experimental literature is generally a difficult task, for a number of reasons. Even when static

public good games are repeated a fixed number of times, the strategic environment is the

same in every period, and there is a unique equilibrium prediction, that does not change over

time. The most common example is the voluntary contribution game with linear payoffs, in

which the individually optimal investment level is zero, while the socially optimal one is the

whole budget. The equilibrium is in dominant strategies, so contributions in past and future

periods do not matter for equilibrium behavior, and agents’ expectations about other agents’

current or future contributions are irrelevant from the standpoint of equilibrium.28 The game

we study, on the other hand, is not only a repeated game, but a stochastic game with an

evolving state variable, and a strategic environment that changes in every period (as the

durable public good is accumulated over time). Our theory makes predictions that are path

dependent and change over time (equilibrium investments are sometimes positive, sometimes

negative, and sometimes zero, depending on the current stock of public good), and, while we

restrict attention to the unique Markov perfect equilibrium, the infinite horizon of the game

generates a plethora of non-stationary equilibria that have much different properties. In this

dynamic setting, not contributing is socially optimal in some continuation games (when the

stock of the public good has reached the optimal level). More importantly, at any point

in time, even in a Markov equilibrium, the individually optimal decision depends on past

contributions through their effect on the current state, as well as on the expectations on

current and future contributions of other agents. Moreover, a fundamental question of our

paper, the impact of investment reversibility on the dynamic free rider problem, cannot be

studied in a static framework where the public good starts out at zero in every period (and,

thus, contributions can only be non-negative).

In spite of these clear difficulties in comparing the two frameworks, we can still draw

some connections between the behavior observed in repeated static public good games and

behavior in our dynamic durable public good experiments. In the reminder of this section

we discuss a few of the most significant similarities and differences.

Over-Investment, Efficiency and Irreversibility. The first has to do with the general

issue of whether contributions tend to be above, below, or approximately equal to the theo-

28This applies as well to some of the dynamic games based on the linear voluntary contributions model,
including the variation with no completion benefit in Duffy et al. 2008.
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retically predicted levels. In static environments, with few exceptions, actual contributions

are generally above the equilibrium levels suggesting that theoretical predictions tend to

overstate the seriousness of free riding.29 Still, contributions not only fail to reach efficient

levels (as Ledyard 1995 reports in his survey), but are generally very much below. Average

contributions in initial plays of the game typically fall in a range between 40% and 60% of the

optimal level, with a systematic decline to very low levels with repetition (between 10% and

20% of the optimal level after 10 periods of play). Similarly, in our dynamic environment,

there is significant over-contribution with respect to the predictions of the unique MPE in the

early periods of play while the public good stock is beginning to accumulate, but this over-

contribution mostly disappears in later periods (especially with reversible investment, where

the long run stock of the public good is very close to the MPE steady state). These declines

over time in both the reversible and irreversible cases lead to significantly inefficient long-run

public good levels (see Figure 2, and Findings 1 and 2). How serious is the inefficiency with

a durable public good, as compared to one-shot public goods problems? Interestingly, the

answer depends critically on whether contributions are reversible. With reversibility, the

median public good stock converges to approximately 2% of the efficient steady state. In

contrast, with irreversibility, the median period 10 stock of public good is approximately

50% of the efficient level. Thus, with reversible investments we see contribution levels that

are less than is typically observed in static voluntary contribution games, but the opposite is

the case with irreversible investment. The effect of irreversibility, clearly important in real

world applications of the theory, can clearly not be observed in static models or in repeated

models without a state variable.

Investment Pattern and Dynamics. Second, there are some similarities in terms of

the investment pattern we observe over time: as in the static literature, in our dynamic

experiments, there is a tendency for initial over-investment in the early periods, followed by

investment levels approaching the theoretical predictions (see Figures 4 and 5). Moreover,

a similar pattern is observed when subjects are re-matched into new groups and the public

good stock starts out at zero, a phenomenon similar to the “re-start effect” from the static

literature (see Andreoni and Croson 2008 for a survey).

Contrary to much of the static literature—where the predictions are no contributions in

every period—the time paths we observe in the dynamic games are qualitatively in line with

the predicted time paths. With reversible investment, the theory predicts positive investment

29There are a few exceptions. Laury and Holt (2008) investigate non-linear, static public good technologies
with interior equilibrium contributions. Palfrey and Rosenthal (1991) explore threshold public goods with
binary contribution decisions. For some of the treatments in these two papers, contributions are less than
equilibrium predictions.
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only in the first period and zero investment from the second period on. With irreversible

investment, the theory predicts positive investment in each period, but at a monotonically

decreasing pace. These general patterns are found in our data. Moreover, the convergence

to the equilibrium predictions follows a different pattern from static experiments and the

equilibrium predictions themselves are path dependent and endogenous: in the treatment

with reversibility, we observe significant levels of negative investment, with subjects reacting

to above-equilibrium accumulation levels and the stock of public good gradually declining in

the direction of the equilibrium steady state.

Heterogeneity in Behavior. Finally, another finding of the more recent experimental

literature on static public good games is the existence of distinct types of behavior. This was

first considered by Isaac, Walker, and Thomas (1984), who classify each investment decision

as being “Strong Free-Riding”, “Weak Free-Riding” or “Lindahl/Altruistic” depending on

whether the investment is less than 33%, between 33% and 66%, and more than 66% of

the individual budget, respectively.30 According to this classification, they report 44% of

investment decisions in their experiment are Strong Free-Riding, 27% are Weak Free-Riding,

and 29% are Lindahl/Altruistic. We applied a similar analysis to our data (adjusting for the

fact that the individual budget in the reversible investment treatments is state-dependent)

and we found a rather similar distribution of decision types (pooling all treatments together):

42% of investment decisions in our experiments are Strong Free-Riding, 18% are decisions

are Weak Free-Riding, and 41% are Lindahl/Altruistic.

A different approach traces these aggregate patterns of contribution behavior to hetero-

geneity at the individual level. For example, there is some evidence from static public good

experiments that some individuals behave as “conditional cooperators”, whose contribution

to the public good is positively correlated with their beliefs about the contributions made by

their group members (Keser and Van Winden 2000, Fischbacher et al. 2001, Burlando and

Guala 2005, Fischbacher and Gaechter 2010).31 While subjects in our experiment are not

explicitly asked to make decisions contingent on the other group members’ contributions,

over the course of the experiment they experience a wide range of (endogenous) past group

decisions and we can use this data to measure the extent to which individual contributions

respond positively to other group members’ past contributions. There is also evidence for

the existence of other behavioral types who are either altruistic or completely selfish.

To identify these different behavioral types, for each subject we estimate a Tobit regres-

sion of the deviation from predicted investment (notice that, in the static experiment, this is

30They do not classify individuals into behavioral types based on their behavior in the 10 periods of play.
31There are different possible interpretations for these behavioral types, such as imitation, conformity,

reciprocity, repeated game strategies, etc.
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simply equal to the investment level) on the average investment of the other group members

in the previous period (with a constant). We then classify each subject as a conditional

cooperator if the slope is significantly different than 0 at the 1% level; as an “unconditional

cooperator” if the slope is not significantly different than 0 and his average investment de-

viation is in the third quantile; as “free rider” if the slope is not significantly different than

0 and his average investment deviation is in the first quantile. The results are reported in

Table 6. Overall, we measure 68% conditional cooperators, 10% unconditional cooperators,

13% free riders, and 9% unclassified. This distribution of behavioral types is roughly in line

with the static literature, although there is considerable variation.32.

IIE, 3 IIE, 5 RIE, 3 RIE, 5 Overall

Unconditional Cooperator - 13% (4) 19% (4) 10% (3) 10%(11)

Conditional Cooperator 100% (24) 80% (24) 52% (11) 40% (12) 68% (71)

Free Rider - 3% (1) 24% (5) 27% (8) 13% (14)

Other - 3% (1) 5% (1) 23% (7) 9% (9)

Table 6: Classification of Subjects’ Strategies. The number of subjects is in parentheses.

Markovian Behavior vs. History-Dependent Behavior. The aggregate outcomes re-

flect the main qualitative features from the MPE: both in RIE and IIE the accumulation

path is inefficiently slow, the public good is under-provided, and IIE induces significantly

higher public good contributions than RIE. On the other hand, the MPE does not fully cap-

ture the complexity of individual behavior and there is abundant evidence of non-stationary,

retrospective behavior: the levels of public good stock are far from efficiency but also far

from the predictions of the Markov perfect equilibrium, especially for IIE; under RIE, public

good levels exhibited a time path of early overproduction followed by negative investment;

we found a substantial fraction of subjects who behave as conditional cooperators. This is

suggestive of some amount of cooperation that may be accountable in part by non-stationary

strategic behavior involving punishments and rewards.

The tools by which players in this voluntary contribution game can reward or punish the

other agents are limited. This is because punishments cannot be “targeted”: an individual

agent can only punish/reward other agents collectively by investing less/more in the public

good in future periods. With this in mind, we regress current individual investment decisions

32The fraction of conditional cooperators in those studies is usually around 50-60%, but ranges from 35%
(Burlando and Guala 2005) to 80% (Keser and Van Winden 2000)

30



on last period’s average investment in their group, controlling for the level of public good

and experience, measured by how many games they have played so far. A positive coefficient

would be consistent with some sort of nonstationary behavior such as collective punishments

and rewards. We also include last period’s standard deviation of investment decisions in their

group, as a high variance will indicate the presence of shirkers in their group, which could

trigger (untargeted) punishments. A negative coefficient would be consistent with untargeted

punishment of individual shirking behavior. Table 7 shows the results for each treatment.

An observation is a single subject’s allocation decision in a single period. We include subject

fixed effects to control for individual heterogeneity and cluster standard errors by group to

take into account possible correlations among decisions taken by the same group.The results

for the four treatments are similar. The public good stock, as well as both “punishment”

variables have the predicted sign. The current stock of the public good is negative and highly

significant. The magnitude of its coefficient is around 10 (for n = 3) and 5 (for n = 5) times

larger in RIE than in IIE. The average lagged investment is positive and highly significant

in all treatments. The magnitude of its coefficient is around 4 times larger in IIE than in

RIE. The lagged standard error is negative and highly significant in all treatments. The

magnitude of its coefficient is around 2 (for n = 3) and 3 (for n = 5) times larger in RIE

than in IIE. There are no significant experience effects. This seems to suggest non-stationary

behavior that may be consistent with strategic attempts to maintain higher-than-equilibrium

investment levels. To the extent that these attempts may have increased investment levels,

the magnitude of such an increase is rather small in RIE but substantial in IIE. While these

attempts were more successful in IIE games than in RIE games, it is worth noticing that a

higher public good provision with irreversible investment is consistent with the predictions

of the Markov equilibrium.
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(1) (2) (3) (4)

Treatment RIE3 RIE5 IIE3 IIE5

Public Good Stock -0.091* -0.045** -0.009** -0.010**

(0.036) (0.014) (0.003) (0.001)

Mean(Investment)t-1 0.292** 0.296** 1.264** 1.347**

(0.055) (0.070) (0.061) (0.096)

SD(Investment)t-1 -0.538** -0.945** -0.298** -0.278*

(0.128) (0.119) (0.084) (0.142)

Match # -0.293 0.216 0.007 0.123

(0.291) (0.209) (0.065) (0.099)

Constant 9.539** 11.992** 1.853 3.815*

(2.873) (2.677) (1.211) (1.610))

Subject FE YES YES YES YES

Pseudo-R2 0.0409 0.0577 0.1821 0.2187

Observations 495 930 1476 1440

Table 7: TOBIT estimates for individual investment decisions. SE clustered by groups in

parentheses; * significant at 5% level; ** significant at 1% level.

6 Discussion and Conclusions

This paper investigated the dynamic accumulation process of a durable public good in a

voluntary contribution setup. Despite the fact that most, if not all, public goods are durable

and have an important dynamic component, very little is known on this subject, both from

a theoretical and empirical point of view. We attempt to provide some initial empirical

findings about voluntary contribution behavior with durable public goods.

We have considered two possible cases: economies with reversible investments (RIE),

in which in every period individual investments can either be positive or negative; and

economies with irreversible investments (IIE), in which the public good cannot be reduced.

Reversibility is an important feature of many public goods problems (for example, common

pool problems), which is completely missed by static analysis. We also have a secondary

treatment dimension: we compare three-members and five-members groups. For all treat-

ments, we have characterized the steady states and the accumulation paths that can be

supported by the optimal solution and by the unique symmetric concave Markov equilib-

rium.
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We highligh three main results. First, the dynamic free riding problem exists and it

is severe, with the long run public good stock levels falling far short of efficiency in all

treatments. The additional free riding component that emerges in this dynamic game is

most obviously seen in reversible investment economies. With reversibility, the dynamic

dimension exacerbates the free rider problem present in static public good provision: if an

agent contributes above the equilibrium levels, not only this reduces the future contributions

by all agents, but it triggers negative investment by other agents that transform part of the

public good stock in private consumption. In these treatments, the median public good stock

converges to approximately 2% of the efficient steady states, versus long run contributions

between 10% and 20% of the optimal level in repeated static public good games.

On the other hand, in line with the comparative static predictions, irreversible invest-

ment leads to significantly higher public good production than reversible investment. The

irreversibility constraint dampens the dynamic free riding problem, by creating a commit-

ment device and reducing the strategic substitutability of contributions. Notice that this has

nothing to do with history dependent trigger strategies made possible by the infinite horizon:

a similar dynamic would arise in a model with a finite horizon (but losing stationarity of

equilibrium strategies). In the treatments where the public good cannot be converted back

to consumption, the median period 10 stock of the public good is approximately 50% of the

efficient level.

Second, we have shown that, in both treatments, there is over-investment in the early

periods, compared to the equilibrium investment levels. In the treatment with reversibility,

this is followed by a significant reversal, with the stock of public good gradually declining in

the direction of the equilibrium steady state. When disinvestment is not feasible, investment

steadily decreases but the initial over-investment cannot be corrected and the long run level

of the public good remains significantly above the equilibrium steady state.

Third, we have proposed a novel experimental methodology to test the assumption that

subjects’ strategies in this complex infinite-horizon game depend only on the state variable,

that is, the accumulated level of the public good. We have shown that, for the reversible

investment treatment, there is evidence of Markovian, forward-looking behavior.

This is the first experimental study of the dynamic accumulation process of a durable

public good. Our design was intentionally very simple and used a limited set of treatments.

As a consequence, there are many possible directions for the next steps in this research. The

theory has interesting comparative static predictions about the effect of other parameters

that we have not explored in this work, such as: the discount factor; the depreciation level;

preferences; and endowments. For example, a higher discount factor increases both the op-
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timal steady state and the equilibrium steady state of the durable public good for all values

of n and for both reversible and irreversible economies. For similar reasons, positive depre-

ciation in the public good technology leads to a decrease in the steady state of the Markov

equilibrium studied here. Among these extensions, it would be particularly interesting to

run experiments that allow a closer comparison with the results from the static literature.

This can be done in a number of different ways: for example, experiments with a finite and

known horizon of one period (that is, δ = 0), or experiments with full depreciation of the

stock at the end of each period and an infinite horizon (that is, δ > 0).

Moreover, our model and experimental design does not consider different rules for nega-

tive investment (for example, allowing subjects to disinvest unilaterally up to the whole stock

and adopting a rationing rule to keep a nonnegative level of public good), or the effect of a

completion benefit at a specified accumulation threshold. We have also limited the analysis

to voluntary contribution mechanisms that turn out to be highly inefficient, both in theory

and in practice. Battaglini, Nunnari, and Palfrey (2012) study how centralized mechanisms

fare in providing durable public goods and show that efficiency increases with the majority

rule required to approve an allocation decision. An interesting direction to pursue from here

would be to consider different decentralized mechanisms and explore which ones are more

efficient for the provision of durable public goods.

Appendix A - Proofs of Propositions

Proof of Proposition 1

The fact that a strictly concave equilibrium has the property stated in the proposition follows

from the discussion in the text. Here we prove existence and uniqueness.

Existence. First note that when we use the functional form u(g) = α
√
g, we have

u′(g) = α
2
√
g

and [u′]−1(x) =
(
α
2x

)2
. Battaglini, Nunnari and Palfrey (2014) show that

there is a weakly concave Markov equilibrium with steady state equal to y∗R for any y∗R ∈[(
αn

2(n−δ)

)2
,
(

α
2(1−δ)

)2]
. To prove that the equilibrium corresponding to the steady state

y∗R =
(

αn
2(n−δ)

)2
is strictly concave we provide an alternative (self contained) existence proof.

Let y∗R =
(

αn
2(n−δ)

)2
, and g1R = max {0, y∗R −W}. For any g > g1R define a value function

v1R(g) =
W−(y∗R−g)

n
+ 1

1−δ

[
α
√
y∗R + δW

n

]
. Note that this function is continuous, non decreasing,

weakly concave and differentiable with respect to g, with derivative [v1R]
′
(g) = 1

n
. From

strict concavity of u(g) it follows that, for any g > g1R, the objective function in (2) is strictly
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concave. Let g2R = max {0, g1R −W}, and define:

v2R(g) =

{
v1R(g) g ≥ g1R

α
√
g +W + δv1R (g +W ) g ∈ [g2R, g

1
R)

Note that v2R(g) is continuous and differentiable in g ≥ g2R, except at most at g1R. To see

that the objective function in (2) is strictly concave in this interval, note that it is strictly

concave for g ≥ g1R. Moreover, for any g ∈ [g2R, g
1
R) and g′ ≥ g1R we have:

[
v2R
]′

(g) =
α

2
√
g +W

+ δ
[
v1R
]′

(g +W )

>
α

2
√
y∗R

+ δ
[
v1R
]′

(y∗R) = 1 >
1

n
=
[
v1R
]′

(g)

The first inequality derives from y∗R > g + W (which is true, by definition of g1R and g2R,

for all g ∈ [g2R, g
1
R)), strict concavity of u(g) and weak concavity of v1R(g). It follows that

u(g) + δv2R(g) is strictly concave in g ≥ g2R. Assume that for all g ≥ gnR, with gnR ≥ 0

and either gnR < g2R or gnR = 0, we have defined a value function vnR(g) that is concave and

continuous, and that is differentiable in g > g1R. Define gn+1
R = max {0, gnR −W}, and

vn+1
R (g) =

{
vnR(g) g ≥ gnR

α
√
g +W + δvnR(g +W ) g ∈

[
gn+1
R , gnR

)
Using the same steps as above, we can easily show that this function is weakly concave,

continuous in g ≥ gn+1
R , and differentiable for g > g1R. Moreover, either gn+1

R = 0 or

gn+1
R < gnR. We can therefore define inductively a value function vR(g) for any g ≥ 0

that is continuous, weakly concave, and that is differentiable at least for g > g1R and so, in

particular, at y∗R. This value function will give rise to an objective function in (2) which is

strictly concave Define now the following strategies:

yR(g) = min {W + g, y∗R} , and xA(g) = [W + g − yR(g)] /n. (5)

We will argue that vR(g), yR(g), xA(g) is an equilibrium. To see this note that by construc-

tion, if the agent uses strategies yR(g), xA(g), then vR(g) describe the expected continuation

value function of an agent. To see that yR(g), xA(g), are optimal given vR(g) note that

for g ≥ g1R,
{
y∗R,

W+g−y∗R
n

}
maximizes (2) when all the constraints except the second are

considered; and for g ≥ g1R, W + g > y∗R, so the second constraint is satisfied as well. For

g < g1R, we must have yR(g) = W + g, xA(g) = 0. We conclude that yR(g), xA(g) is an

optimal reaction function given vR(g).
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Uniqueness. Consider a strictly concave equilibrium with value function vR(g). Be-

cause u(g) + δvR(g) − g is strictly concave, there is a unique maximum y∗R of the objective

function of (2). It follows that we must have yR(g) = min {W + g, y∗R}, implying that

yR(g) = y∗R for any g ≥ y∗R −W and yR(y∗R) = y∗R. It is straightforward to show that the

derivative of the value function in g ≥ y∗R −W exists and it is equal to v′R(g) = 1/n. Using

the first order condition that defines y∗R, we must have α

2
√
y∗R

+δv′R(y∗R) = 1. This implies that

in any strictly concave Markov equilibrium we must have a steady state y∗R =
(

αn
2(n−δ)

)2
.

Proof of Proposition 2

Since the equilibrium is weakly concave, we must have that vIR(g) admits a right and left

derivative at any point g. Let us call y+IR(y∗IR) and y−IR(y∗IR)) the, respectively, right and left

derivatives. Since at y∗R we must have yIR(y∗IR) = y∗IR, it is easy to see that y+IR(y∗IR) = 1,

since yIR(y∗IR + ∆) = y∗IR + ∆.

Consider now the left derivative. In a left neighborhood of y∗IR, we must have yIR(g) ∈
(0,W + g), so xIR(g) > 0 and

yIR(g) ∈ arg max
y
{α√y + δvIR(y)− y} (6)

. We can write:

vIR(g) =
W + g − yIR(g)

n
+ α

√
yIR(g) + δvIR(g) (yIR(g))

= α
√
yIR(g) + δvIR(g) (yIR(g))− yIR(g) +

W + g − (n− 1)yIR(g)

n

By the theorem of the maximum we therefore have: v′IR(g) = 1
n

+ n−1
n
y′IR(g). Combining

this expression with the first order condition of (6) we obtain:

y′IR(g) =
1− n

(
1− α

2
√
g

)
/δ

1− n

for any g < y∗IR. At y∗IR the left derivative must therefore be y−IR(y∗IR) =
1−n

(
1− α

2
√

y∗
IR

)
/δ

1−n .

Imposing y−IR(y∗IR) = y+IR(y∗IR) = 1, we obtain that in any concave Markov equilibrium with

irreversibility we must have y∗IR =
(

α
2(1−δ)

)2
as claimed.
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Proof of Proposition 3

The efficient outcome (the social planner solution characterized in Section 2.1) can be sus-

tained in the voluntary contribution game with reversible investment, when agents use non-

stationary strategies entailing reversal to the unique concave Markov equilibrium charac-

terized in Section 2.2. To show this, we construct strategies whose outcome is the efficient

level of public good and we show that there is no profitable deviation from the equilibrium

path. The symmetric strategy for each group member is to invest i∗P (g) = min
{
W
n
,
y∗P−g
n

}
if gt = y∗(gt−1) (i.e., if the observed level of the public good at the beginning of the pe-

riod is consistent with equilibrium strategies, or, in other words, it is the efficient level of

public good given the stock of g at the beginning of the previous period) and to invest

i∗R(g) = min
{
W
n
,
y∗R−g
n

}
where y∗R < y∗P (i.e., the investment associated with the Markov

equilibrium characterized in Proposition 1) if gt 6= y∗(gt−1) (i.e., if a deviation from equi-

librium has occurred in the previous period). To prove that this strategy profile is an

equilibrium we show that agents have no profitable deviation.

An agent’s payoff if she follows the equilibrium strategy is:

W

n
− i∗P (g) + α

√
g + ni∗P (g) + δVEQ(g + ni∗P (g))

An agent’s payoff if she deviates (according to her most profitable deviation) is:

W

n
+
g

n
+ α

√
g − g

n
+ (n− 1)i∗P (g) + δVDEV

(
g − g

n
+ (n− 1)i∗P (g)

)
An agent’s most profitable deviation is to invest −g/n (i.e. to subtract from the public

good her share and to consume it). The gains from this deviation are greater the closer g is to

y∗P . Therefore, we will check whether an agent has an incentive to deviate when g ∈ [gP , y
∗
P ],

or whether:

W

n
−y
∗
P − g
n

+α
√
y∗P+δVEQ(y∗P ) ≥ W

n
+
g

n
+α

√
g − g

n
+ (n− 1)

y∗P − g
n

+δVDEV

(
g − g

n
+ (n− 1)

y∗P − g
n

)

where VEQ(y∗P ) = 1
1−δ

[
W
n

+ α
√
y∗P
]
, and:

VDEV

(
n− 1

n
y∗P

)
=

W

n
−
y∗R − n−1

n
y∗P

n
+ α

√
y∗R + δVDEV (y∗R)

=
W

n
−
y∗R − n−1

n
y∗P

n
+ α

√
y∗R +

δ

1− δ

(
W

n
+ α

√
y∗R

)
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After we plug in VEQ(y∗P ) and VDEV
(
n−1
n
y∗P
)

and we re-arrange terms, the inequality

above becomes:

1

1− δ

[
α
√
y∗P − δα

√
y∗R

]
− δ

n

[
(n− 1)

n
y∗P − y∗R

]
≥ α

√
n− 1

n
y∗P +

y∗P
n

Replacing y∗P =
(

αn
2(1−δ)

)2
and y∗R =

(
αn

2(n−δ)

)2
, the inequality we want to prove becomes:

1

1− δ

[
α2n

2(1− δ)
− δα2n

2(n− δ)

]
− δ(n− 1)α2

4(1− δ)2
+δn

(
α

2(n− δ)

)2

≥ α2n

2(1− δ)

√
n− 1

n
+

α2n

4(1− δ)2

Multiplying both sides by (1− δ)2 and rearranging, we have:

α2n

2
− α2n

4
− δα2(n− 1)

4
≥ (1− δ)α

2n

2

√
n− 1

n
− δn

(
α(1− δ)
2(n− δ)

)2

+
(1− δ)δα2n

2(n− δ)

There is δ̂R such that ∀δ > δ̂R the inequality above holds. To see this note that as δ

approaches 1 the RHS approaches zero, while the LHS is positive for any δ ∈ [0, 1].

Using the parameters and the utility function of our experiments, δ̂R = 0.80 for n = 3

and δ̂R = 0.86 for n = 5. We use δ = 0.75, which means that, in the experimental setting,

the efficient level of the public good cannot be sustained in equilibrium. However, it can

be shown that non-stationary strategies of the type proposed above can sustain an almost

efficient level of the public good, y∗. In this case, the inequality we want to prove is:

1

1− 0.75

[
4
√
y∗ − 3

√
y∗R

]
− 0.75

n

[
(n− 1)

n
y∗ − y∗R

]
≥ 4

√
n− 1

n
y∗ +

y∗

n

This inequality holds for y∗ = 520 in the treatment with 3 agents (where y∗P = 576) and

for y∗ = 1332 in the treatment with 5 agents (where y∗P = 1600).
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Appendix B - Additional Tables and Figures

Period RIE 3 RIE 5

Theory Obs Avg Mdn SD Theory Obs Avg Mdn SD

1 7.11 70 31.71 31.5 9.04 5.54 60 47.38 50.5 19.35

2 7.11 46 47.54 45.5 21.65 5.54 48 70.21 97.5 45.73

3 7.11 31 38.87 20 31.77 5.54 33 59.97 34 60.76

4 7.11 24 35.83 22 36.62 5.54 24 51.08 22.5 56.01

5 7.11 21 29.14 12 36.14 5.54 21 42.29 27 52.33

6 7.11 10 27.30 18.5 30.34 5.54 15 50.60 32 45.00

7 7.11 7 16.71 12 13.03 5.54 12 36.58 36.5 31.90

8 7.11 7 17.29 12 16.39 5.54 12 44.50 42.5 31.58

9 7.11 7 18.71 16 8.44 5.54 6 32.00 35.5 19.97

10 7.11 3 16.00 10 10.39 5.54 6 28.83 22 25.86

11 7.11 3 21.67 29 14.47 5.54 3 24.00 24 2.00

12 7.11 3 26.67 31 11.15 5.54 3 30.67 43 24.01

13 7.11 3 30.33 31 16.01 5.54 3 31.67 37 25.42

Table 6: Summary statistics of public good stock per period, RIE. Observations are groups.
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Period IIE 3 IIE 5

Theory Obs Avg Mdn SD Theory Obs Avg Mdn SD

1 21.32 80 48.66 50 8.90 18.88 60 56.12 57 13.55

2 27.04 72 94.32 97 19.68 24.56 57 109.86 114 28.39

3 30.96 64 137.39 142.5 31.68 28.52 54 158.74 168.5 46.87

4 33.92 60 175.32 180 45.18 31.64 42 200.36 218 62.79

5 36.28 56 208.30 209 60.34 34.12 33 239.15 244 88.65

6 38.24 52 242.94 241 72.79 36.24 30 270.67 270 113.28

7 39.88 40 273.80 269 85.92 38.04 21 301.71 292 134.20

8 41.32 36 291.72 287.5 97.47 39.64 18 323.93 324 154.00

9 42.56 28 308.50 314.5 112.57 41.04 15 345.27 346 182.95

10 43.64 20 298.40 293.5 119.39 42.28 12 386.08 367 188.00

11 44.60 20 315.40 318 130.79 43.40 6 366.33 308.5 244.92

12 45.48 16 303.75 291 122.83 44.44 − − − −
13 46.28 8 382.25 385 102.04 45.40 − − − −
14 47.00 8 400.38 391.5 116.78 46.28 − − − −
15 47.64 4 435.00 424.5 191.57 47.08 − − − −
16 48.24 4 465.00 459.5 207.09 47.84 − − − −
17 48.80 4 495.75 496 223.46 48.52 − − − −

Table 7: Summary statistics of public good stock per period, IIE. Observations are groups.
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Period RIE 3 RIE 5

Obs Avg Mdn SD Obs Avg Mdn SD

1 210 10.57 10 5.85 300 9.48 11 6.76

2 138 5.46 5 8.88 240 3.79 4 10.49

3 93 −2.55 0 11.63 165 −1.78 −2 11.61

4 72 −1.60 0 10.58 120 −1.74 0 12.28

5 63 −0.92 0 8.46 105 −2.8 −2 11.29

6 30 1.13 0 5.82 75 0.76 0 11.64

7 21 0.00 0 5.22 60 −2.37 −1.5 12.87

8 21 0.19 0 4.57 60 1.58 0 9.45

9 21 0.48 0 7.22 30 −1.93 −2 9.09

10 9 −3.22 −5 6.34 30 −0.63 −2 8.03

11 9 1.89 4 6.15 15 3.33 2 5.37

12 9 1.67 3 9.92 15 1.33 −1 6.38

13 9 1.22 0 9.09 15 0.20 0 6.68

Table 8: Summary statistics of individual investment per period, RIE.

Observations are individual investment decisions.
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Period IIE 3 IIE 5

Obs Avg Mdn SD Obs Avg Mdn SD

1 240 16.22 18 4.61 300 11.22 14 5.36

2 216 15.30 16 5.52 285 10.68 12 5.63

3 192 14.39 15 5.66 270 9.88 11 5.97

4 180 13.02 15 6.15 210 8.83 8.5 6.23

5 168 10.82 10 7.23 165 7.73 8 6.28

6 156 9.83 10 7.46 150 6.70 5 6.29

7 120 8.43 5 7.61 105 6.43 4 6.51

8 108 6.39 5 6.90 90 5.91 3 6.32

9 84 5.77 4.5 6.85 75 5.27 2 6.33

10 60 5.87 4.5 6.67 60 4.00 0 6.11

11 60 5.67 1.5 7.27 30 2.73 0 5.07

12 48 4.15 1 6.15 − − − −
13 24 6.21 4.5 7.42 − − − −
14 24 6.04 3 7.62 − − − −
15 12 10.83 10 8.75 − − − −
16 12 10.00 8 7.89 − − − −
17 12 10.25 9 7.69 − − − −

Table 9: Summary statistics of individual investment per period, IIE.

Observations are individual investment decisions.
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Period RIE3 vs. IIE3 RIE5 vs. IIE5 RIE3 vs. RIE5 IIE3 vs. IIE5

1 0.0000 0.0050 0.0000 0.0001

2 0.0000 0.0000 0.0030 0.0004

3 0.0000 0.0000 0.0897 0.0040

4 0.0000 0.0000 0.2700 0.0211

5 0.0000 0.0000 0.3493 0.0543

6 0.0000 0.0000 0.1661 0.1810

7 0.0000 0.0000 0.1375 0.3270

8 0.0000 0.0000 0.0506 0.3253

9 0.0000 0.0006 0.1358 0.4186

10 0.0006 0.0003 0.4473 0.1158

Table 10: P-values of t-tests on the equality of public good stock averages.

RIE 3 RIE 5

g0 invD invOS p-value invD invOS p-value

0 10.56 6.48 0.0000 9.48 7.24 0.0009

5 4.84 4.08 0.5972 2.12 4.88 0.0022

10 2.00 2.08 0.2287 0.72 3.72 0.0003

15 0.44 0.64 0.8538 1.88 2.76 0.3939

20 -0.96 -2.08 0.3119 -1.52 0.25 0.0338

25 -0.76 -3.72 0.0033 2.16 -0.12 0.0473

30 1.40 -5.52 0.0000 -1.34 -1.44 0.9320

35 7.28 -7.52 0.0000 1.40 -2.28 0.0105

Table 11: Average individual investment as a function of beginning-of-the-period public

good stock in dynamic experiments vs reduced form one shot experiments.
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RIE 3 IIE 3

Investment Type ALL R1 R2-4 R5-7 R8-10 ALL R1 R2-4 R5-7 R8-10

INV > 0 67.0 100 57.8 44.7 39.2 82.8 100 96.4 77.9 59.5

* I = W 5.1 12.4 2.6 - - 27.7 47.9 35.7 21.4 9.5

* I ∈ (.5W,W ) 16.2 31.4 13.9 3.5 2.0 24.2 33.3 34.4 20.3 12.3

* I ∈ (0, .5W ] 45.7 56.2 41.3 41.2 37.3 30.9 18.8 26.4 36.3 37.7

INV = 0 6.7 - 5.9 14.9 17.7 17.2 - 3.6 22.1 40.5

INV < 0 26.4 - 36.3 40.4 43.1 - - - - -

* I ∈ (0,−g/n) 21.6 - 36.3 40.4 43.1 - - - - -

* I = −g/n 4.8 - 6.9 6.1 11.8 - - - - -

Table 4: Individual Investment Types, n = 3, # Observations: 705 for RIE, 1716 for IIE.

RIE 5 IIE 5

Investment Type ALL R1 R2-4 R5-7 R8-10 ALL R1 R2-4 R5-7 R8-10

INV > 0 51.5 82.3 45.3 35.0 35.8 83.1 96 89.8 76.7 60.9

* I = W 26.4 47.7 23.8 14.2 15.8 33.1 46.3 37.5 25.0 18.2

* I ∈ (.5W,W ) 3.5 4.7 4.6 1.3 0.8 16.5 19.0 20.0 13.3 9.3

* I ∈ (0, .5W ] 21.5 30.0 17.0 19.6 19.2 33.5 30.7 32.4 38.3 33.3

INV = 0 12.9 17.7 8.8 13.3 14.2 17.0 4.0 10.2 23.3 39.1

INV < 0 35.7 - 45.9 51.7 50.0 - - - - -

* I ∈ (0,−g/n) 29.0 - 37.9 39.6 40.8 - - - - -

* I = −g/n 6.7 - 8.0 12.1 9.2 - - - - -

Table 5: Individual Investment Types, n = 5, # Observations: 1230 for RIE, 1740 for IIE.
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Figure 6: Quartiles of time paths of the stock of g. Notes: panel (a) for RIE with n = 5,
panel (b) for IIE with n = 5, panel (c) for RIE with n = 3, panel (d) for IIE with n = 3;
the continuous line represents the median, while the dashed lines represent the interquartile
range.

Appendix C - Sample Experimental Instructions

INSTRUCTIONS FOR RIE5 TREATMENT

Thank you for agreeing to participate in this experiment. During the experiment we

require your complete, undistracted attention and ask that you follow instructions carefully.

Please turn off your cell phones. Do not open other applications on your computer, chat

with other students, or engage in other distracting activities, such as reading books, doing

homework, etc. You will be paid for your participation in cash, at the end of the experiment.

Different participants may earn different amounts. What you earn depends partly on your

decisions, partly on the decisions of others, and partly on chance. It is important that you

not talk or in any way try to communicate with other participants during the experiments.

Following the instructions, there will be a practice session and a short comprehension

quiz. All questions on the quiz must be answered correctly before continuing to the paid

session. At the end you will be paid in private and you are under no obligation to tell others

how much you earned. Your earnings are denominated in FRANCS which will be converted

to dollars at the rate of 75 FRANCS to a DOLLAR.
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This is an experiment in group decision making. The experiment will take place over a

sequence of 10 matches. We begin the match by dividing you into THREE groups of five

members each. Each of you is assigned to exactly one of these groups. In each match each

member of your group will make investment decisions.

In each round, each member of your group has a budget of 16 francs. Each member

must individually decide how to divide his or her budget into private investment and project

investment, in integer amounts. The private investment always has to be greater than or

equal than 0. The project investment can be either positive, or zero, or negative. Any

amount you allocate to private investment goes directly to your earnings for this round. The

project investment produces earnings for all group members in the following way.

[SHOW SLIDE]

The project earnings in a round depend on the size of the project at the end of that round.

Specifically, each group member earns an amount in francs proportional to the square root

of the size of the project at the end of the round (precisely equal to 4*sqrt(project size)).

Thus, for example, if the size of the project at the end of the round equals 9, then each

member earns exactly 4*sqrt(9)=12 additional francs in that round. If the size is equal

to 36, each member earns exactly 4*sqrt(36)=24 additional francs in that round. In your

display, earnings are always rounded to two decimal places. So, for example if the project size

at the end of a round equals 5, each member earns 4*sqrt(5)=8.94 francs from the project

in that round.

The second important fact about the project is that it is durable. That is, project

investment in a round increases or decreases the size not just for that round, but also for all

future rounds. The size of your group’s project starts at 0 in the first round of the match. At

the end of the first round it is equal to the sum of your group members’ project investment

in that round. This amount gets carried over to the second round. Whenever the size of

the project is greater than 0, you can propose a negative project investment. However, in

this case, the proposed negative investment cannot exceed one fifth of the size of the project

at the beginning of the round (in other words, you can dispose only of your share of the

project).At the end of the second round, the size of the project equals to the combined

amount invested in the project in rounds 1 and 2 by all members of your group, and so

forth. So, every round project investment changes the size of the project for the current

round and all future rounds of the match.

The total number of rounds in a match will depend on the rolling of a fair 8-sided die.

When the first round ends, we roll it to decide whether to move on to the second round. If
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the die comes up a 1 or a 2 we do not go on to round 2, and the match is over. Otherwise,

we continue to the next round. We continue to more rounds, until a 1 or a 2 is rolled at the

end of a round and the match ends. At the end of each round your earnings for that round

are computed by adding the project earnings to your private investment. For example, if

your private investment is 20 and the end-of-round project size is 9, then your earnings for

that round equal 20 + 4*sqrt(9) = 20+12 = 32. Your earnings for the match equal the sum

of the earnings in all rounds of that match.

After the first match ends, we move to match 2. In this new match, you are reshuffled

randomly into THREE new groups of five members each. The project size in your new group

again starts out at 0. The match then proceeds the same way as match 1. After match 10,

the experiment is over. Your total earnings for the experiment are the sum of your earnings

over all rounds and all matches.

We will now go through one practice match very slowly. During the practice match,

please do not hit any keys until I tell you, and when you are prompted by the computer to

enter information, please wait for me to tell you exactly what to enter. You are not paid for

this practice match.

[AUTHENTICATE CLIENTS]

Please double click on the icon on your desktop that says BP2. When the computer

prompts you for your name, type your First and Last name. Then click SUBMIT and wait

for further instructions. You now see the first screen of the experiment on your computer.

It should look similar to this screen.

[SHOW SLIDE]

At the top left of the screen, you see your subject ID. In the top right you can see that

you have been assigned by the computer to a group of FIVE subjects, and assigned a group

member number: 1, 2, 3, 4, or 5. This group assignment and your member number stays

the same for all rounds of this match, but will change across matches. It is very important

that you take careful note of your group member number.

As a visual aid, there is a graph on the left that shows exactly how project earnings

will depend on project size. The current size of the project is marked with a large dot at

the origin. If each member of your group decides to invest nothing this period, then this

will be the size that determines your project earnings at the end of the round. You can use

your mouse to move the curser along the curve to figure out what your earnings will be for

different levels of project investment. Also, if you type an amount in the Project Investment
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box, the computer will compute and display the corresponding project earnings for you just

below the box. Take a minute to practice using your curser to move along the curve, and

typing in different possible investment levels. But do not hit the confirm button yet.

At this time, go ahead and type in any investment decision you wish and hit the confirm

button. You are not paid for this practice match so it does not matter what you enter.

[SHOW SLIDE]

This screen now summarizes the outcome of the round. Here you see your group member

number, and the end of round project size. The investment decisions of each member are

displayed in a table. Below the table are displayed your earnings for the round, given the

outcome. This marks the end of the round. The table with columns in the bottom of your

screen is the History panel and summarizes all of this important information.

We now roll an eight-sided die to decide whether to move on to round 2. If the die comes

up a 1 or a 2, we do not go on to round 2, and the match is over. If the die comes up 3

through 8, we continue to a second round of the match. [Roll die and do second round unless

it comes up a 1 or 2. Next say “the die roll was X, so we will continue to the next round”.

If X=(1 or 2) say “if this was a real match, there would be no second round. That would

be the end of the match. However, we want to go through one more practice round to make

sure you are familiar with the computer interface.”]

[SHOW SLIDE]

In this second round, you keep the same group member number as in the first round,

and the members of your group all stay the same. Notice that the project investment from

round 1 carries over, so the round 2 beginning project size equals the project size at the end

of round 1. In this second round please follow the same instructions of the first round. You

can go ahead now. Since this is a practice match, we will not roll a die after the second

round, and the practice match will end. During the paid matches, each match will continue

until the die comes up a 1 or a 2.

48



References

1. Andreoni, James, and Rachel Croson. 2008. “Partner versus Strangers: The Effect

of Random Rematching in Public Goods Experiments,”in Handbook of Experimental

Economics Results, C. Plott and V. Smith eds. North Holland: Amsterdam.

2. Battaglini, Marco, and Thomas R. Palfrey. 2012 “The Dynamics of Distributive Poli-

tics,” Economic Theory, 49(3) : 739-777.

3. Battaglini, Marco, Salvatore Nunnari, and Thomas R. Palfrey. 2012. “Legislative Bar-

gaining and the Dynamics of Public Investment,” American Political Science Review,

106(2): 407-429.

4. Battaglini, Marco, Salvatore Nunnari, and Thomas R. Palfrey. 2014. “Dynamic Free

Riding with Irreversible Investments,” American Economic Review, 104(9): 2858–2871.

5. Burlando, Roberto and Francesco Guala. 2005. “Heterogeneous Agents in Public

Goods Experiments,” Experimental Economics, 8(1): 35-54.

6. Chaudhuri, Ananish. 2011. “Sustaining cooperation in laboratory public goods exper-

iments: a selective survey of the literature,” Experimental Economics, 14 (1): 47-83..

7. Choi, Syngjoo, Douglas Gale, and Shachar Kariv. 2008. “Sequential Equilibrium

in Monotone Games: A Theory-Based Analysis of Experimental Data,” Journal of

Economic Theory, 143(1): 302-330.

8. Choi, Syngjoo, Douglas Gale, Shachar Kariv, and Thomas R. Palfrey. 2011. “Network

Architecture, Salience and Coordination,” Games and Economic Behavior, 73(1): 76-

90.

9. Diev, Pavel and Walid Hichri. 2008. “Dynamic Voluntary Contributions to a Discrete

Public Good: Experimental Evidence,” Economics Bulletin, 23(3): 1-11.

10. Dorsey, Robert E.. 1992. “The Voluntary Contributions Mechanism with Real Time

Revisions,” Public Choice, 73: 261-82.

11. Dockner, E.J. and N.V. Long. 1992. “International pollution control: Cooperative

versus noncooperative strategies,” Journal of Environmental Economics and Manage-

ment, 24: 13-29.

12. Duffy, John, Jack Ochs, and Lisa Vesterlund. 2007. “Giving Little by Little: Dynamic

Voluntary Contribution Games,” Journal of Public Economics, 91(9): 1708-1730.

49



13. Fershtman, C., and S. Nitzan. 1991. “Dynamic Voluntary Provision of Public Goods,”

European Economic Review, 35: 1057–1067.
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