

The contribution of neuroimaging and neuromodulation to management science

Stefano F. Cappa
Vita-Salute University and San Raffaele
Scientific Institute
Milan, Italy

SCIENCE AND SOCIETY

Translating upwards: linking the neural and social sciences via neuroeconomics

Clement Levallois, John A. Clithero, Paul Wouters, Ale Smidts and Scott A. Huettel

Bridging social and neural sciences

The biology of decision-making: goal-directed activity and motivation

Temporal prediction error (Schultz et al., 1997)

O'Doherty et al., 2004

Cognitive neuroscience and windows into the brain in action

First principle. Functional segregation

The brain is not a bowl of porridge

Or an organ, such as the liver or the kidney

 The brain has structure, and this is reflected in its function as a complex system

Activation of the human brain by monetary reward

NeuroReport 8, 1225-1228 (1997)

Activation of the human brain by monetary reward

Gregor Thut, Wolfram Schultz,¹ Ulrich Roelcke, Matthias Nienhusmeier, John Missimer, R. Paul Maguire and Klaus L. Leenders^{CA}

Second principle. Functional integration

Nature Reviews | Neuroscience

Connectivity in functional MR

 functional connectivity: correlations between spatially remote neurophysiological events (data driven)

 effective connectivity: influence one neuronal system exerts over another (hypothesis driven)

Camara et al., 2009

Third principle. Testing for causality

TMS with a MRI template

SofTaxic Navigator system

based on digitized skull landmarks (nasion, inion and two pre-auricular points) and about 40 scalp points (Fastrak Polhemus digitizer)

Behavioural changes?

Diminishing Reciprocal Fairness by Disrupting the Right Prefrontal Cortex

Daria Knoch, 1,2,3* Alvaro Pascual-Leone, Kaspar Meyer, Valerie Treyer, Ernst Fehr 1,3*

Neuroscience of management. Normative or applicative?

Normative aspects

- Mechanistic understanding of the neural mechanisms involved in analysis, decision and action at the individual and group level
 - Assessing magnitude and probability of reward
 - Evaluation of risk and uncertainty
 - Exploitation and innovation
 - Goal reassessment

Applications: from psychology to neurology of individual differences

INTERNATIONAL HEALTH EXHIBITION, 1884.

ANTHROPOMETRIC LABORATORY,

Arranged by FRANCIS GALTON, F.R.S.

Sex Colour of eyes	·Date Initials
EYESIGHT. right eye left eye Greatest distance in inches, of reading	SWIFTNESS of blow of hand in feet per second
Colour sense, good- ness of	of squeeze in lbs. of left ,, STRENGTH
Firor per cent. in dividing a line of 15 inches JUDGMENT OF EYE. in three in two parts parts	SPAN OF ARMS From finger tips of the composite hands feet, inches.
Error in degrees of estimating squareness	HEIGHT Sitting, measured feet, inches.
HEARING. Keenness can hardly be tested here owing to the noises and echoes.	Standing in shoes feet, inches. less height of heelinches.
Highest audible between o.000 vibrations and per o.000 second.	Height without shoes feet, inches.
BREATHING POWER. Greatest expiration in cubic inches	WEIGHT in ordinary in-door clothing in lbs.

Age last birthday?
Married or unmarried?

Inplace?

Residence in town, suburb or country?

Main variables

(usually considered in neuroscience studies)

- Age
- Gender
- Education/occupation
- Linguistic background

Gender and decision-making

- Playing a gambling task: 1st person regret/relief
- Observing the outcomes of another player (3rd person "shared" regret/relief)
- Observing the outcomes of random choices by the computer (no responsibility, "shared" disappointment/satisfaction)

Effects of experienced and attended emotional outcomes on risk-aptitude

- Changes in risk-taking coherent with the preceding outcomes:
- Increased risk-seeking after relief for a risky choice or regret for a non-risky choice, and viceversa, only if the agent is human (both 1st and 3rd person)

Gender behavioral effects

 No significant difference between the effects of experienced and attended outcomes; both larger than the effect of random choices by the computer

• Stronger influence from others' outcomes in female than male subject; no significant interaction with outcome-type

Gender effects in learning not to risk from others' past experience

- Stronger influence from others' outcomes in female than male subject; no significant interaction with outcome-type
- Stronger activation of the mOFC, reflecting the effect of previous outcome that behaviorally decrease risk-seeking, in female than male participants
- Significant correlation with empathy (BEES) scores

Gender effects: females > males RL-R or RG-NR

Additional variables (starting to be considered)

- Genetic background
- Temperament
- Specific skills
- Motivation

• ...

Genetics and brain structure

5-HTTLPR polymorphism impacts human cingulateamygdala interactions: a genetic susceptibility mechanism for depression

Lukas Pezawas^{1,3}, Andreas Meyer-Lindenberg^{1,3}, Emily M Drabant¹, Beth A Verchinski¹, Karen E Munoz¹, Bhaskar S Kolachana¹, Michael F Egan¹, Venkata S Mattay¹, Ahmad R Hariri² & Daniel R Weinberger¹

Temperament and neurotransmitter binding

MORESCO ET AL.

Empathy score and brain structure

Negative correlation

Right temporal pole

Leftsterrepotorplatietal
jutictionygdala, middle
cingulate
Right parahippocampal
gyrus

Left SMA

Expertise and brain activation

Expertise for cars and birds recruits brain areas involved in face recognition

ORGANIZATION SCIENCE Vol. 2, No. 1, February 1991 Printed in U.S.A.

EXPLORATION AND EXPLOITATION IN ORGANIZATIONAL LEARNING*

JAMES G. MARCH

Graduate School of Business, Stanford University, Stanford, California 94305

Locus Coeruleus projections

YERKES-DODSON RELATIONSHIP

Tonic LC activity

To summarize...

- Neuroscience knowledge is infiltrating any science dealing with human activity, including management
- Knowledge of the potentials and of the limits is necessary to critically evaluate any claim
- A better understanding of the neural mechanisms involved in complex human behaviors may be beneficial, both at the theoretical and application level