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1 Introduction

• Preferences⇒ behaviors⇒ material payoff consequences⇒ evolutionary
selection pressure on preferences [indirect evolution, Güth and Yaari (1992)]

• Question: how could preferences that differ from material payoff maxi-
mization survive?

• Literature on preference evolution has so far shown that there are two
mechanisms whereby evolution by way of natural selection leads to non-
selfish preferences



• First mechanism: effect of own preferences on others’behaviors [Schelling
(1960)]

— Inequity-averse responders do well in ultimatum bargaining

• Preference evolution under complete information [Fershtman and Judd
(1987), Bester & Güth (1998), Bolle (2000), Possajennikov (2000), Koçke-
sen, Ok & Sethi (2000), Sethi & Somanathan (2001), Heifetz, Shannon
and Spiegel (2007)]: non-selfish preferences

• Preference evolution under incomplete information [Ok & Vega-Redondo
(2001), Dekel, Ely & Yilankaya (2007)]: selfish preferences



• Second mechanism: assortative matching

• A long-standing tradition in biology [Hamilton (1964), Hines and Maynard
Smith (1979), Grafen (1979), Bergstrom (1995, 2003)]

• Literature on preference evolution [Alger (2010), Alger and Weibull (2010,
2012, 2013)]

• Result: preferences that induce non-selfish behaviors are selected for, and
selfish preferences are selected against



• Assortativity is positive as soon as there is a positive probability that in-
teracting parties have inherited their preferences or moral values from a
common “ancestor” (genetic or cultural)

• In biology: genetics, kinship and “inclusive fitness” (Hamilton, 1964)

• In social science: culture, education, ethnicity, geography, networks, cus-
toms and habits

• Homophily [McPherson, Smith-Lovin, and Cook (2001), Ruef, Aldrich, and
Carter (2003), Currarini, Jackson, and Pin (2009, 2010), Bramoullé and
Rogers (2009)]



• This morning:

1. Evolutionary stability of strategies in a population where individuals are
uniformly randomly matched into pairs to interact

2. Evolutionary stability of preferences (within the parametric class of altruistic
preferences) in a population where siblings interact in pairs; in sibling interac-
tions there is assortativity : a mutant is more likely than a resident to interact
with a mutant

• What’s next?

A general model of evolutionary stability of traits in a population where indi-
viduals are randomly (but perhaps assortatively) matched into n-player groups
to interact + applications



2 The general model

• A continuum population

• Individuals are randomly (but not necessarily uniformly) matched into n-
player groups

• Each group plays a symmetric game in material payoffs

• Material payoff from playing xi ∈ X against x−i ∈ Xn−1: π (xi,x−i)

• Normal form (material) game Γ = 〈X,π, n〉



• Each individual carries some heritable trait θ ∈ Θ which determines his/her
behavior in the material game

• For our stability analysis we consider populations with at most two types
present, θ and τ , in arbitrary proportions 1− ε and ε

• If ε is small and positive, θ is called the resident trait and τ the mutant
trait

• We study the type distribution’s robustness to small and rare random
shocks



• The matching process is exogenous and random

• For a given population state s = (θ, τ , ε):

— let Pr (θ|θ, ε) be the probability that, for a given resident, another
group member (uniformly randomly drawn from the group) is a resident

— let Pr (θ|τ , ε) be the probability that, for a given mutant, another
group member (uniformly randomly drawn from the group) is a resident



• Let φ (ε) = Pr [θ|θ, ε]− Pr [θ|τ , ε] and call φ the assortment function

• Let limε→0 φ (ε) = σ, for some σ ∈ [0, 1], the index of assortativity

— Uniform random matching ⇒ σ = 0

— Sibling interactions when types are inherited from parents⇒ σ = 1/2

— “Cultural parents”and homophily: σ ∈ (0, 1)



• Statistical issue for n > 2: potential conditional dependence (given the
type of the individual at hand, between pairs of other members)

• We assume that conditional dependence vanishes in the limit as ε→ 0

• Thus, for a mutant, the type distribution among the other n − 1 players
converges to Bin (σ, n− 1) as ε→ 0



• Assume: an individual’s trait uniquely determines her average material
payoff

• Let F (θ, τ , ε) and G (θ, τ , ε) denote the average material payoff to an
individual with trait θ and trait τ , respectively

• Assume: F (θ, τ , ·) and G (θ, τ , ·) are continuous

Definition 1 A trait θ ∈ Θ is evolutionarily stable against a trait τ ∈ Θ if
there exists an ε̄τ > 0 such that for all ε ∈ (0, ε̄τ):

F (θ, τ , ε) > G (θ, τ , ε) .

θ is an evolutionarily stable trait (EST) if it is evolutionarily stable against
all traits τ 6= θ in Θ.



A suffi cient condition for θ ∈ Θ to be an EST is that, for all τ 6= θ,

lim
ε→0

F (θ, τ , ε) > lim
ε→0

G (θ, τ , ε) (1)

Let H : Θ2 → R be the function defined by

H (τ , θ) = lim
ε→0

G (θ, τ , ε)

H (θ, θ) = limε→0G (θ, θ, ε) = limε→0 F (θ, θ, ε) = limε→0 F (θ, τ , ε) im-
plies that (1) may be written:

H (θ, θ) > H (τ , θ)

Proposition For θ ∈ Θ to be an EST, (θ, θ) must be a Nash equilibrium of
the two-player game in which the common strategy set is Θ and the payoff
function is H. A suffi cient condition is that (θ, θ) is a strict Nash equilibrium
of this game.



2.1 Strategy evolution

An individual’s strategy depends only on his/her trait; formally, let Θ = X

If x is the resident strategy and y the mutant strategy,

G (x, y, ε) =
n∑

m=1

(
n− 1
m− 1

)
[Pr (y|y, ε)]m−1 [Pr (x|y, ε)]n−m

·π
(
y,y(m−1),x(n−m)

)
and

H (y, x) =
n∑

m=1

(
n− 1
m− 1

)
σm−1 (1− σ)n−m π

(
y,y(m−1),x(n−m)

)



For n = 2:

H (y, x) = (1− σ) · π (y, x) + σ · π (y, y)

For n = 3:

H (y, x) = (1− σ)2 · π (y, x, x) + 2σ · (1− σ) · π (y, y, x) + σ2 · π (y, y, y)

Proposition Suppose that π is continuously differentiable and that X is an
open set. Then, if x̂ ∈ X is an evolutionarily stable strategy,

π1 (x̂) + σ · (n− 1) · πn (x̂) = 0,

where x̂ is the n-dimensional vector whose components all equal x̂.



A canonical public-goods situation (γ ∈ (0, 1] and c > 0):

π (xi,x−i) =

1

n

n∑
j=1

xj

γ − c

2
x2
i

H (y, x) =
n∑

m=1

(
n− 1
m− 1

)
σm−1 (1− σ)n−m

·
[
m

n
y +

(
1− m

n

)
x

]γ
− c

2
y2

H1 (y, x)|y=x = 0 is necessary and suffi cient for x to be an ESS



Proposition The unique ESS is:

x̂ =

σγ + 1
n (1− σ) γ

c

 1
2−γ



2.2 Preference evolution under complete information

• Each trait θ ∈ Θ uniquely determines a utility function uθ : Xn → R

• LettingΠ(n) (τ , θ,m/n) be the equilibrium material payoff to a τ -individual
in a group with a share m/n of τ -individuals:

G (θ, τ , ε) =
n∑

m=1

(
n− 1
m− 1

)
[Pr (τ |τ , ε)]m−1 [Pr (θ|τ , ε)]n−m

·Π(n) (τ , θ,m/n)

and

H (τ , θ) =
n∑

m=1

(
n− 1
m− 1

)
σm−1 (1− σ)n−mΠ(n) (τ , θ,m/n)



2.2.1 Altruism

• Trait: degree of altruism

• Utility for an individual i with degree of altruism α:

uα (xi,x−i) = π (xi,x−i) + α
∑
j 6=i

π
(
xj,x−j

)

• Set of potential traits: Θ = [−1, 1]

• Let α be the resident trait and β the mutant trait:

H (β, α) =
n∑

m=1

(
n− 1
m− 1

)
σm−1 (1− σ)n−mΠ(n) (β, α,m/n)



The public goods example again:

uα (xi,x−i) = π (xi,x−i) + α ·
∑
j 6=i

π
(
xj,x−j

)

= [1 + (n− 1)α] ·

1

n
xi +

1

n

∑
j 6=i

xj

γ

−c
2
·

x2
i + α

∑
j 6=i

x2
j



If there arem β-altruists and (n−m) α-altruists, a Nash eq. strategy profile is
a n-dimensional vector with m components equal to y and n−m components
equal to x, where (x, y) solves: γ

[
1
n +

(
1− 1

n

)
α
]
·
[
m
n y +

(
1− m

n

)
x
]γ−1 − cx = 0

γ
[

1
n +

(
1− 1

n

)
β
]
·
[
m
n y +

(
1− m

n

)
x
]γ−1 − cy = 0



Proposition The unique locally evolutionarily stable degree of altruism is

α̂ =
σ − 1

n (1− γ) (1− σ)

1 +
(

1− 1
n

)
(1− γ) (1− σ)



2.3 Preference evolution under incomplete information

• Each trait θ ∈ Θ uniquely determines a utility function uθ : Xn → R

Definition 2 In any state s = (θ, τ , ε) ∈ S, the (assumed unique) (Bayesian)
Nash Equilibrium is the strategy pair (x∗, y∗) ∈ X2 satisfying{

x∗ ∈ arg maxx∈X Uθ
y∗ ∈ arg maxy∈X Uτ

where

Uθ =
n−1∑
m=0

(
n− 1
m

)
[Pr (θ|θ, ε)]n−m−1 [Pr (τ |θ, ε)]m uθ

(
x,y∗(m),x∗(n−m−1)

)

Uτ =
n∑

m=1

(
n− 1
m

)
[Pr (θ|τ , ε)]n−m [Pr (τ |τ , ε)]m−1 uτ

(
y,y∗(m−1),x∗(n−m)

)



• Given s = (θ, τ , ε), let
(
x∗(ε), y

∗
(ε)

)
denote the unique BNE. Then:

G (θ, τ , ε) =
n∑

m=1

(
n− 1
m− 1

)
[Pr (τ |τ , ε)]m−1 [Pr (θ|τ , ε)]n−m

·π
(
y∗(ε),y

∗(m−1)
(ε) ,x∗(n−m)

(ε)

)

H (τ , θ) =
n∑

m=1

(
n− 1
m− 1

)
σm−1 (1− σ)n−m π

(
y∗(0),y

∗(m−1)
(0) ,x∗(n−m)

(0)

)



• Let βθ : X ⇒ X denote the the best-reply correspondence,

βθ (y) = arg max
x∈X

uθ
(
x,y(n−1)

)
∀y ∈ X

and Xθ ⊆ X the set of fixed points under βθ,

Xθ = {x ∈ X : x ∈ βθ (x)}

• Let Θθ be the set of behavioral clones:

Θθ =
{
τ ∈ Θ : ∃ x ∈ Xθ such that (x, x) ∈ BNE (θ, τ , 0)

}



Theorem Suppose the behavior of homo moralis, in the absence of mutants,
is uniquely determined. Then:

(a) Homo moralis with degree of morality σ is evolutionarily stable against all
types that are not its behavioral clones.

(b) All types that are not its behavioral clones are evolutionarily unstable if the
type set is rich.

• So, what, exactly, is a homo moralis?



• For each x ∈ Xn and κ ∈ [0, 1], and any player i, let x̃−i be a random
vector with statistically independent components x̃j (j 6= i) where

Pr
[
x̃j = xi

]
= κ and Pr

[
x̃j = xj

]
= 1− κ ∀j

Definition 3 A homo moralis is an individual with utility function

uκ (xi,x−i) = Eκ [π (xi, x̃−i)] ∀x ∈ Xn.

for some κ ∈ [0, 1], the individual’s degree of morality.



• For 0 < κ < 1, the individual’s goal is to choose a strategy xi that, if used
with probability κ by other players, would maximize her material payoff.
(How would it be if, with probability κ, each individual would do what I
do?)

• For n = 2:

uκ (x, y) = (1− κ) · π (x, y) + κ · π (x, x)

• For n = 3:

uκ (x, y, z) = (1− κ)2 · π (x, y, z) + κ · (1− κ) · π (x, x, z)

+κ · (1− κ) · π (x, y, x) + κ2 · π (x, x, x)



Corollary Any BNE strategy x∗ in a monomorphic population of homo moralis
with κ = σ is also an ESS. Moreover, if a strategy is a ESS for some σ, it is
also a BNE strategy in a monomorphic population of homo moralis with degree
of morality κ = σ.

• Evolutionarily stable strategies may be viewed as emerging from prefer-
ence evolution when individuals are not programmed to strategies but are
rational and play equilibria under incomplete information.



3 Implications

• Applications to

— environmental economics

— moral hazard, principal-agent relations

(Alger and Ma (2003), Alger and Renault (2006,2007)

— bargaining

— participation and voting in elections



4 Conclusions

• Our analysis suggests that selfishness is evolutionarily stable only in special
circumstances, while homo moralis with degree of morality equal to the
index of assortativity is always evolutionarily stable.

• Moral preferences may thrive, even under incomplete information and even
in very large groups

• Lots of new challenges: extensions, applications, tests in laboratory exper-
iments...



THE END


